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Abstract 
 
The SCOOP (South Central Oklahoma Oil Province has been one of the most competitive Lower 48 unconventional play areas in terms of 
persistent rig count, even with the current low oil and gas prices. With the goal of identifying and differentiating the most efficient and 
successful completion practices from potential reservoir controls, this study analyzed the completion parameters from 405 horizontal wells, 
located in five different Oklahoma counties (Garvin, Grady, McClain, Murray, and Stephens), drilled by 15 different operator companies and 
with hydrocarbon production allocated exclusively to the Woodford Shale (WDS). As a result, two preferred amounts of proppant/hydraulic 
fracturing fluids by lateral length have been identified. However, more proppant/hydraulic fracturing fluids pumped and longer horizontal 
sections are not clearly correlated with a higher hydrocarbon production (First month IP30 and First Year Production). In many cases, the best 
production seems to be affected predominantly by reservoir (geomechanical) properties (WDS landing zone) and the principal stress field 
orientation. 
 
To understand these reservoir controls, this work involved a detailed mapping and reservoir characterization study that included 8 vertical, 12 
horizontal, and 1 cored Woodford Shale wells. The horizontal wells were divided into two different sets. One set of horizontal wells with the 
best hydrocarbon and liquid rich production, drilled from north to south, with landing zones mainly associated with the upper part of the 
Middle Woodford and the Upper Woodford Shale. These rocks are more brittle, silica-rich intervals, characterized in core analysis by higher 
Acoustic Impedance (A.I.), high Young’s Modulus (E), and low Poisson’s ratio (ν) values. The second set of horizontal wells was poor in 
hydrocarbon liquid production. Those wells were drilled from south to north and landed into more ductile lower Woodford Shale rock intervals. 
These two sets of wells were separated by a short distance (< 1,000 feet) and were drilled by the same operator, under similar completion 
conditions.  
 



The interactions with the principal stresses was another factor analyzed in this study. In central Oklahoma, in-situ stress orientations from focal 
mechanism and well-borehole data show a good correlation and relatively uniform maximum (SHmax) stress oriented about N85°±5°E. The 
horizontal wells analyzed and a great number of wells in the SCOOP trend have been drilled parallel (to subparallel) to the minimum stress 
(Shmin). Normally, the best drilling practices recommend drilling horizontal wells parallel to maximum stress (SHmax), because hydraulic 
fractures created during completion may propagate more easily - perpendicular to the borehole (i.e. parallel to Shmin). However, instead of 
orienting the wells parallel to the stress field, companies in the SCOOP play have preferred to drill horizontal wells in a north-south or south-
north orientation, possibly because that is the fastest (economic) and most efficient way of infilling a section (640 acres) with a minimum 
number of horizontal wells. As a consequence of the horizontal wells and stress field orientation, induced fractures are propagated vertically in 
the boreholes and into some Mississippian pay units, clearly identified in the vertical wells, which have possibly been stimulated during the 
completions. 
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Outline
• Location of SCOOP Play – Study area

• Summary of completion practices from 405 horizontal wells

• Woodford Shale mechanical-stratigraphy subdivision

• Stress field orientation within SCOOP Play

• Detailed mapping case-study (Grady County)
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405 Horizontal wells from five Counties 
(Garvin, Grady, McClain, Murray, and Stephens) 
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Well Upper_Perf Lower_Perf Gross_Perf _Intvl Lat Len Horiz_ft Date_Completion   
A N/A N/A 7,647 7,839 4/13/2015      
B 14,606 21,933 7,327 7,555 4/13/2015      
C 15,329 21,849 6,520 7,514 2/23/2014       
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I 15,444 22,093 6,649 7,743 9/6/2015      
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K 15,167 21,603 6,719 7,493 9/17/2015      
L N/A N/A N/A N/A N/A
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lower Shmin values correlates to further distribution of 
microseismic events away from the well both vertically and laterally.



Conclusions

• Longer laterals, more proppant, fluids, and frac stages do not always 
translate to more hydrocarbon (liquids) recovery in horizontal wells. 

• Advances in horizontal drilling and completion efficiency are important, 
but are only a part of the story… Reservoir characterization and detailed 
mapping of landing zones are pretty important. 

• The horizontal wells with the best liquid rich production in the SCOOP 
trend have mainly landed on some rock intervals associated with the 
upper part of the middle Woodford and the upper Woodford Shale. Some 
Mississippian units may be stimulated during the completions due to 
stress field orientation.



Next Steps

• Include more cored wells in the modeling

• Characterize Mississippian age units overlying the Woodford 
Shale (Meramec, Sycamore, Mayes Formations)

• Employ machine learning data classification. Extrapolate 
lithofacies and geomechanical properties using supervised 
and unsupervised –learning algorithm (e.g. SVM – Support 
Vector Machine) and seismic inversion toward areas without 
core-well control
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