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Abstract

A collaborative geologic, engineering, and data mining effort has yielded insights into Codell production in the northern DJ.
Data mining facilitated the access and download of over 6,500 public domain .las files for modern vertical wells in the
Wattenberg/Silo corridor. Raster logs were used to supplement the .las data, net sandstone pay was picked based on a bulk
density cutoff of 2.525 gm/cc, and a grid was constructed using values from over 8,000 wells. Using the top of the Codell and
the base of net sandstone pay as depth limits, and an 8 - 25% density porosity calculation range (based on matrix and fluid
density of 2.68 and 1.0 gm/cc, respectively), phih was computed in Petra for over 5,000 wells with .las files only, and a phih grid
constructed. Both grids were "sampled” to over 900 horizontal Codell producers within the study footprint, and the assigned
petrophysical values were cross-plotted against length-normalized production data. Phih correlates better than net sandstone
with length-normalized production. However, both correlations vary with geographic area, and break down to some extent
outside of Wattenberg Field. Normalized production in the Silo, Fairway-Brensee, and Redtail areas displays relatively poor
correlation with net sandstone and phih. In contrast, the Codell horizontal production in all areas (including Wattenberg) shows
a consistent, inverse, correlation with water-oil ratios from vertical and horizontal producers, suggesting an important role for
thermal maturity in Codell productive potential. Cross-plots of normalized production with hydrocarbon pore volume show the
best overall correlation, and support the hypothesis that thermal maturity may be a more important production driver than
mechanical reservoir properties in some areas. This conclusion informs the consideration of Codell sourcing, and whether
migrated portions of the play may exist. While mainly a subject for follow-on study, preliminary analysis of elemental Uranium
log data (from over 300 .las files) has also been conducted for this study. The analysis outlines possible subdivision of the play
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into thermal maturity categories, even within Wattenberg. The northern DJ Codell play has evolved in a very rich data
environment, with respect to both geologic and engineering data. Optimization and expansion of the play will surely benefit
from further analysis of this wealth of existing data.
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Production Metrics
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Sampled Net Sand Grid to
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OR mapped,
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PhiH and HCPV
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“90% of this game is
half-mental”

Rock Quality has Anticipated Effect on Production

How Do We Best Assess Effects of Source Maturity
and Area HCPV ?

THINK GLOBALLY, ACT LOCALLY, and
Stay Tuned for PART 2



