
Visualizing a Sub-Salt Field With Image Logs: Image Facies, Mass Transport Complexes, and 

Reservoir Implications From Thunder Horse, Mississippi Canyon, Gulf of Mexico* 

Lindsey C. Henry
1
, Jennifer A. Wadsworth

2
, and Birger Hansen

3

Search and Discovery Article #10938 (2017)** 
Posted June 5, 2017 

*Adapted from oral presentation given at AAPG 2017 Annual Convention and Exhibition, Houston, Texas, April 2-5, 2017

**Datapages © 2017 Serial rights given by author. For all other rights contact author directly. 

1Gulf of Mexico Reservoir Development, BP, Houston, Texas, United States (lindsey.henry@bp.com) 
2L48, BP, Houston, Texas, United States 
3Eriksfiord, Houston, Texas, United States 

Abstract 

Thunder Horse is a deepwater asset in the Gulf of Mexico, Mississippi Canyon, with turbidite sandstone reservoirs deposited 

during the Middle Miocene in the Boarshead Basin. Imaging the reservoirs is difficult because the adjacent salt stock and 

canopy inhibit seismic imaging, and drilling in deepwater conditions makes coring expensive. Image logs provide an alternate 

means of high resolution visualization of the reservoir, and through the image facies scheme presented here, reveal the character 

of sandstone and interbedded mudrock fabric that allows for interpretations of depositional processes. Image logs are interpreted 

by picking bedding boundaries that represent the dip magnitude and azimuth of the dipping beds. The picked dips follow trends 

according to the sandstone or mudrock fabric being imaged. Similar dip magnitudes and azimuths in sandstone indicate 

sediment gravity flows traveling the same direction, like high density turbidity currents. Another pattern in sandstone is dips 

with similar magnitudes but varying azimuths, indicating that flows are in the same plane but traveling in different directions, 

like an avulsing channelized system. High variability of dipping beds in mudrock indicates deformation through downslope 

slumping, and steepening up/shallowing up dip patterns also seen in mudrock indicate slide blocks and folds. Correlating image 

logs across northwest Thunder Horse reveals that slumps, slides, and folds built up mass transport complexes that eroded 

underlying sandstone in the proximal side of the Boarshead Basin. The mass transport complexes built a 200 m+ thick mounded 

feature that ponded another sandstone reservoir behind it, locally increasing the reservoir thickness. Previously, all mudrock at 

Thunder Horse was thought to be planar-bedded shale deposited from hemipelagic settling or low density turbidity currents, but 
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high resolution image logs were the keystone in confirming the deformed, resedimented nature and erosive capability of the 

mass transport complexes. This level of detail is highly valuable to a sub-salt field where stratigraphic features such as erosion 

or amalgamation are not always visible through seismic imaging. As a case study this type of high-resolution data has wide 

applicability to other deepwater, sub-salt reservoirs, as improved depositional interpretations inform reservoir performance and 

impact future well planning. 
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Thunder Horse 
• Partnership BP 75% ExxonMobil 25% 

 

• Discovered 1999 in Mississippi Canyon 
 

• Produces from three stacked Miocene reservoirs: Pink, Brown, and Peach 
 

• Two structures: North and South 
 

• To date has produced 320 million barrels oil 
 

• Production Drilling Quarters 
 



Study Focus: Northwest Thunder Horse, Middle Miocene 

Pink 6.5L surface 

Study focuses on Pink 5.0 and Pink 6.5L 
reservoirs and interbedded mudrock. 

Did deposition occur 
around or over the salt? 
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Data: Image Logs and Core  
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Image/Core Facies: Sandstone 
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Sandstone Paleocurrent Analysis with Well 3  NGI 
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5.0 Oriented Core Set Boundary Dips 

Paleocurrents trend SSE.  
 

Implication:  
Flows NNW to SSE, over the (incipient?) salt diapir. 
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Image/Core Facies: Mudrock 



Dip Trends in Mud and Sand 
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Image Facies 

Amalgamating unidirectional 
turbidite sands 

Hemipelagic mud or low 
density turbidites 

Scouring, avulsing turbidite sands Slide block 

Sandy slump Muddy slump Fold 
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Do MTCs help us or hurt us? 
Map view Profile view MTC: 

-Erosion of Pink 6.5L 
reservoir 
-Built up a topographic 
high that ponded the 
Pink 5.0 reservoir 

Well 2 Well 3 



Conclusions: Thunder Horse 

• Dips in mudrock show widely varying dip magnitude and azimuth, 
interpreted as slumps, slides, and folds, building up mass transport 
complexes. 

   

• Turbidite sand dips are more likely to be conformable to regional dip and 
strike. 
 

• Pink 5.0 fairway is SSE, along the regional axis of lower Mississippi 
Canyon. 
 

• MTCs locally eroded and remobilized the Pink 6.5L and Pink 5.0 reservoirs. 
In core and on seismic the MTCs also appear to build up a topographic 
high and pond Pink 5.0 reservoir. 
 



Do MTCs help us or hurt us? 

• Can be reliably identified in core and image logs but not always on seismic. 
   

• Can amalgamate as layers that are visualized by seismic as parallel 
continuous, but are not laterally extensive. 

  

• Can erode underlying reservoirs. 
  

• Can remove biostratigraphic markers. 
 

• May contain sandy components masquerading as turbidite reservoirs. 
  

• Can create bathymetric highs as evidenced by hardgrounds in core, which 
are pronounced enough to cause ponding. 
 
 Both. 

Conclusions: MTCs impact on reservoirs 
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