Visualizing a Sub-Salt Field With Image Logs: Image Facies, Mass Transport Complexes, and Reservoir Implications From Thunder Horse, Mississippi Canyon, Gulf of Mexico*

Lindsey C. Henry¹, Jennifer A. Wadsworth², and Birger Hansen³

Search and Discovery Article #10938 (2017)**
Posted June 5, 2017

*Adapted from oral presentation given at AAPG 2017 Annual Convention and Exhibition, Houston, Texas, April 2-5, 2017
**Datapages © 2017 Serial rights given by author. For all other rights contact author directly.

1Gulf of Mexico Reservoir Development, BP, Houston, Texas, United States (lindsey.henry@bp.com)
2L48, BP, Houston, Texas, United States
3Eriksfiord, Houston, Texas, United States

Abstract

Thunder Horse is a deepwater asset in the Gulf of Mexico, Mississippi Canyon, with turbidite sandstone reservoirs deposited during the Middle Miocene in the Boarshead Basin. Imaging the reservoirs is difficult because the adjacent salt stock and canopy inhibit seismic imaging, and drilling in deepwater conditions makes coring expensive. Image logs provide an alternate means of high resolution visualization of the reservoir, and through the image facies scheme presented here, reveal the character of sandstone and interbedded mudrock fabric that allows for interpretations of depositional processes. Image logs are interpreted by picking bedding boundaries that represent the dip magnitude and azimuth of the dipping beds. The picked dips follow trends according to the sandstone or mudrock fabric being imaged. Similar dip magnitudes and azimuths in sandstone indicate sediment gravity flows traveling the same direction, like high density turbidity currents. Another pattern in sandstone is dips with similar magnitudes but varying azimuths, indicating that flows are in the same plane but traveling in different directions, like an avulsing channelized system. High variability of dipping beds in mudrock indicates deformation through downslope slumping, and steepening up/shallowing up dip patterns also seen in mudrock indicate slide blocks and folds. Correlating image logs across northwest Thunder Horse reveals that slumps, slides, and folds built up mass transport complexes that eroded underlying sandstone in the proximal side of the Boarshead Basin. The mass transport complexes built a 200 m+ thick mounded feature that ponded another sandstone reservoir behind it, locally increasing the reservoir thickness. Previously, all mudrock at Thunder Horse was thought to be planar-bedded shale deposited from hemipelagic settling or low density turbidity currents, but
high resolution image logs were the keystone in confirming the deformed, resedimented nature and erosive capability of the mass transport complexes. This level of detail is highly valuable to a sub-salt field where stratigraphic features such as erosion or amalgamation are not always visible through seismic imaging. As a case study this type of high-resolution data has wide applicability to other deepwater, sub-salt reservoirs, as improved depositional interpretations inform reservoir performance and impact future well planning.

References Cited

Visualizing a sub-salt field with image logs: image facies, mass transport complexes, and reservoir implications from Thunder Horse, Mississippi Canyon, Gulf of Mexico

Lindsey C. Henry, Jennifer A. Wadsworth, Birger Hansen
Thunder Horse

- Partnership BP 75% ExxonMobil 25%
- Discovered 1999 in Mississippi Canyon
- Produces from three stacked Miocene reservoirs: Pink, Brown, and Peach
- Two structures: North and South
- To date has produced 320 million barrels oil
- Production Drilling Quarters
Study Focus: Northwest Thunder Horse, Middle Miocene

Did deposition occur **around** or **over** the salt?

Study focuses on Pink 5.0 and Pink 6.5L reservoirs and interbedded mudrock.

- **Climate Transition**: Tethys seaway closed
 - **Pink 5.0** 13.612-13.215 Ma
 - **Pink 6.5L**

- **Climate Optimum**: Tethys seaway open
 - **400,000 years**
Value of Image Logs

Dip Analysis

Borehole
Shallow Dip
Steep Dip

Unrolled

Dips

Rose Diagram

Data Types

ADN ($)
OBMI ($$)
NGI ($$$)
<table>
<thead>
<tr>
<th>Facies</th>
<th>Sub-Salt Seismic</th>
<th>ADN/OBMI</th>
<th>NGI</th>
<th>Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mudrock</td>
<td></td>
<td>M1</td>
<td>Mm</td>
<td>Mb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M1</td>
<td>MI</td>
<td>Mba</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M1</td>
<td>Mb</td>
<td>Mab</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M2</td>
<td>Mds</td>
<td>Mds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M3</td>
<td>McMM</td>
<td>SiM</td>
</tr>
<tr>
<td>Heterolithic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandstone</td>
<td>平行连续</td>
<td>S1</td>
<td>SSI</td>
<td>Hm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hm</td>
<td>Hsb</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsb</td>
<td>Hsd</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hsd</td>
<td>Hmd</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hmd</td>
<td>Sm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sm</td>
<td>Sdw</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sdw</td>
<td>Sdw1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sdw1</td>
<td>Sdw2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sdw2</td>
<td>Sdw3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sdw3</td>
<td>Si</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Si</td>
<td>Smp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Smp</td>
<td>MS/ccMS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MS/ccMS</td>
<td>Sb</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sb</td>
<td>Sc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sc</td>
<td>mcS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mcS</td>
<td>Si</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Si</td>
<td>Sba</td>
</tr>
<tr>
<td>Conglomerate</td>
<td></td>
<td>S2</td>
<td>Sx</td>
<td>Sr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sr</td>
<td>Sr-cl</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sr-cl</td>
<td>Sr-s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S3</td>
<td>Sds</td>
<td>Sds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SC</td>
<td>Cgl</td>
<td>Cgl</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cgl</td>
<td>Cgm</td>
</tr>
</tbody>
</table>
Image/Core Facies: Sandstone

Massive Sandstone/S1

Laminated Sandstone/S1 and S2
Sandstone Paleocurrent Analysis with Well 3 NGI

5.0 Oriented Core Set Boundary Dips

Paleocurrents trend SSE.

Implication:
Flows NNW to SSE, over the (incipient?) salt diapir.
Image/Core Facies: Mudrock

Calcareous Mudrock/M1

Deformed Mudrock/M2 and M3
Dip Trends in Mud and Sand

Well 1

Sandstone or hemi-pelagic mudrock are best structural dip indicators in this environment.

Well 2

Well 3
Amalgamating unidirectional turbidite sands
Hemipelagic mud or low density turbidites
Scouring, avulsing turbidite sands
Slide block
Sandy slump
Muddy slump
Fold
Strike rose diagrams indicate depositional axes.
Do MTCs help us or hurt us?

MTC:
- Erosion of Pink 6.5L reservoir
- Built up a topographic high that ponded the Pink 5.0 reservoir
Conclusions: Thunder Horse

• Dips in mudrock show *widely varying dip magnitude and azimuth*, interpreted as slumps, slides, and folds, *building up mass transport complexes*.

• Turbidite sand dips are more likely to be conformable to regional dip and strike.

• Pink 5.0 fairway is **SSE, along the regional axis of lower Mississippi Canyon**.

• MTCs locally **eroded** and **remobilized** the Pink 6.5L and Pink 5.0 reservoirs. In core and on seismic the MTCs also appear to **build up a topographic high and pond** Pink 5.0 reservoir.
Do MTCs help us or hurt us? Both.

Conclusions: MTCs impact on reservoirs

• Can be reliably identified in core and image logs but not always on seismic.
• Can amalgamate as layers that are visualized by seismic as parallel continuous, but are not laterally extensive.
• Can erode underlying reservoirs.
• Can remove biostratigraphic markers.
• May contain sandy components masquerading as turbidite reservoirs.
• Can create bathymetric highs as evidenced by hardgrounds in core, which are pronounced enough to cause ponding.

Harzhauser, M., Kroh, A., Mandic, O., Piller, W.E., Göhlich, U., Reuter, M., Berning, Björn, Biogeographic responses to geodynamics: a key study all around the Oligo-Miocene Tethyan Seaway. Zoologischer Anzeiger 246, 241-256.

Back up
MTCs
- Erode
- Remobilize
- Amalgamate
- Pond