Hierarchical Evaluation of Geologic Carbon Storage Resource Estimates: Cambrian-Ordovician Units within the MRCSP Region*

Cristian R. Medina¹, John A. Rupp², Kevin Ellett², David A. Barnes³, Matthew J. Rine³, Matthew S. Erenpreiss⁴, and Stephen F. Greb⁵

Search and Discovery Article #80563 (2016)**
Posted December 5, 2016

*Adapted from oral presentation given at AAPG 2016 Eastern Section Meeting, Lexington, Kentucky, September 25-27, 2016
**Datapages © 2016 Serial rights given by author. For all other rights contact author directly.

¹Indiana Geological Survey, Indiana University, Bloomington, IN, USA (crmedina@indiana.edu)
²Indiana Geological Survey, Indiana University, Bloomington, IN, USA
³Department of Geosciences, Western Michigan University, Kalamazoo, MI, USA
⁴Ohio Geological Survey, Department of Natural Resources, Columbus, OH, USA
⁵Kentucky Geological Survey, University of Kentucky, Lexington, KY, USA

Abstract

The Midwest Regional Carbon Sequestration Partnership (MRCSP) aims to study the regional distribution and geologic storage suitability of units within the Cambrian-Ordovician sequences, including the Knox Supergroup, St. Peter Sandstone, Trenton and Lexington Limestones, and equivalent units across the MRCSP region.

To date, we have compiled a comprehensive data set of wireline logs and petrophysical information that include core analysis for porosity and permeability and mercury injection capillary pressure (MICP) analyses. Using these data, carbon storage resource estimates (SRE) are evaluated using a hierarchical approach that addresses uncertainty in the estimates by incorporating different models of formation porosity based on a series of increasingly complex portrayals of the pore system. The simplest analysis follows the USDOE methodology whereby a SRE is calculated using a single value for porosity in the assessed formation. Additional estimates follow the same general methodology but employ increasingly precise spatially variable porosity models based on formation diagenesis (depth-dependent function), reservoir suitability (effective porosity), distinct petrofacies (advanced reservoir characterization), and multiple realizations of porosity using data-driven geostatistical methods.

Results from this hierarchical approach help illuminate the magnitude of uncertainty that should be expected in SREs as a function of data availability and the level of reservoir characterization that is achievable for a given formation. A semi-probabilistic SRE calculation methodology using Monte Carlo simulations to create models for porosity generally tends to underestimate the range of uncertainty in storage resource. Conceivably, the higher the order model, the lower the uncertainty in the SRE. Ongoing research is investigating whether improved precision implicit in higher orders of the hierarchy are generating more accurate estimates of storage volumes.
Selected References

Websites Cited

Hierarchical Evaluation of Geologic Carbon Storage Resource Estimates: Cambrian-Ordovician Units within the MRCSP Region

Cristian R. Medina1*; John A. Rupp1; Kevin Ellett1; David A. Barnes2; Matthew J. Rine2; Matthew S. Erenpreiss3; Steve F. Greb4

1Indiana Geological Survey, Indiana University, Bloomington, IN, USA
2Department of Geosciences, Western Michigan University, Kalamazoo, MI, USA
3Ohio Geological Survey, Department of Natural Resources, Columbus, OH, USA
4Kentucky Geological Survey, University of Kentucky, Lexington, KY, USA

*crmedina@indiana.edu

Presented at:
Eastern Section, American Association of Petroleum Geologist (ES-AAPG)
Lexington, Kentucky, September 27, 2016
Outline

• Purpose
• Midwest Regional Carbon Sequestration Partnership (MRCSP)
• Stratigraphy
• Reservoir characterization
• Methods
• Results
• Conclusions
Purpose

- To evaluate the CO₂ storage potential in saline aquifers of Cambrian-Ordovician strata underlying portions of the MRCSP states.

- To explore the use of five different methodologies to independently generate storage resource estimates (SRE).
 - The methods differ fundamentally in how they estimate values for porosity (∅).

- To compare the various results and assess how each of the different methods yield SREs with various magnitudes and explore the reasons for “inter-method” variability.
Midwest Regional Carbon Sequestration partnership (MRCSP)

- One of the seven partnerships in US and Canada
- 10 states
- This work focuses on saline aquifers in Indiana, Michigan, Ohio, Kentucky, West Virginia, and Pennsylvania
Stratigraphy / Units

Seal vs. Reservoir (Knox Supergroup)

Source: www.lawmerallarm.org/
Stratigraphy / Units

- **Upper Ordovician Maquoketa Gp. and equivalent confining seal and/or reservoir units**
- **Middle Ordovician Trenton-Black River and equivalent reservoir units**
- **Middle Ordovician St. Peter Sandstone reservoir unit**
- **Cambro-Ordovician Beekmantown-Knox Group and equivalent reservoir units**

Legend:
- Unconformity
- Base of Mapped Units
Isopach of Primary Reservoir Seal: Maquoketa Group and Equivalents

Source: https://geologictimepics.com/
Cross Section I (SEE-NEE)

Illinois Basin Cincinnati Arch Appalachian Basin

KY OH PA

Maquoketa Shale and equivalents
[Seal, Unit 1]

Trenton Limestone and equivalents
[Reservoir, Unit 2]

St. Peter Sandstone and equivalents
[Reservoir, Unit 3]

Knox Supergroup and equivalents
[Reservoir, Unit 4]

Depth (ft):
- 0
- 500
- 1000
- 1500
- 2000
- 2500
- 3000
- 3500
- 4000
- 4500
- 5000
- 5500
- 6000
- 6500
- 7000
- 7500
- 8000
- 8500
- 9000
- 9500
- 10000

Depth (m):
- 0
- 50
- 100
- 150
- 200
- 250
- 300
- 350
- 400
- 450
- 500
- 550
- 600
- 650
- 700
- 750
- 800
- 850
- 900
- 950
- 1000
- 1050
- 1100
- 1150
- 1200
- 1250
- 1300
- 1350
- 1400
- 1450
- 1500
- 1550
- 1600
- 1650
- 1700
- 1750
- 1800
- 1850
- 1900
- 1950
- 2000
DOE Methodology

“The **volumetric methods** require the area of the target formation or horizon along with the formation’s thickness and porosity...”

• Designed to be reconnaissance or highest level estimation of potential storage volumes

• Uses a single value for all basic parameters

Storage Resource Estimate (SRE):

\[
SRE_{CO_2} = \text{Area} \times \text{Thickness} \times \text{Porosity} \times \text{Density}_{CO_2} \times E_{saline}
\]
Efficiency Factor

Employs an “efficiency factor” (E_{saline}) to account for the lack of accuracy caused by variability in factors.

Efficiency factor uses “widely accepted assumptions about in-situ fluid distributions in porous formations and fluid displacement processes commonly applied in the petroleum and groundwater science fields.”

In saline aquifers, because of the high degree of uncertainty in estimates (96 to 99%), the resultant volumes are highly discounted (4 to 1% of the calculated values).

* However, when any of the factors in the basic volumetric equation are “enhanced” with more accurate, less uncertain data, the efficiency factors need to be modified (increased) to account for these changes.

$$SRE_{\text{CO}_2} = \text{Area} \times \text{Thickness} \times \text{Porosity} \times \text{Density}_{\text{CO}_2} \times E_{\text{saline}}$$

where

$$E_{\text{saline}} = E_{\text{An}/\text{At}} \times E_{\text{hn}/\text{hg}} \times E_{\phi/\phi_{\text{tot}}} \times E_{\nu} \times E_{\text{d}}$$
This Work’s Methodology

Increasing in sophistication/complexity of porosity data

<table>
<thead>
<tr>
<th>Method I</th>
<th>Method II</th>
<th>Method III</th>
<th>Method IV</th>
<th>Method V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumes average porosity in all units ($\phi = 10%$)</td>
<td>Uses average porosity from core analysis</td>
<td>Uses porosity from wireline logs</td>
<td>Uses a diagenetic model that assumes an exponential decrease of porosity as a function of depth</td>
<td>Uses MICP data on pore size distribution patterns to define ‘petrofacies’ models</td>
</tr>
<tr>
<td>Similar to DOE methodology</td>
<td>Logs used include neutron, sonic, and density</td>
<td>Robust dataset</td>
<td>Robust dataset</td>
<td>Limited data</td>
</tr>
<tr>
<td>Robust dataset</td>
<td>Limited data</td>
<td>Robust dataset</td>
<td>Robust dataset</td>
<td>Limited data</td>
</tr>
</tbody>
</table>

- To facilitate comparison of results among methods, the efficiency factor was held constant
- Results also reported in tonnes of CO$_2$ /km2
- Number of data points varies depending on methodology.
Method I

- Assumes average porosity in all units ($\phi_{tot} = 10\%$)
- Follows a volumetric equation (ie, methodology published in Atlas by DOE-NETL, 2010)

\[
SRE_{CO_2} = A_t * h_g * \phi_{tot} * \rho_{CO_2} * E_{saline}
\]

\[
SRE_{CO_2} = A_t * h_g * 0.10 * 0.73 * [0.01, 0.04]
\]

Where:
- A_t is the area of a given county
- h_g is the average thickness, in the county, of unit under assessment
- ϕ_{tot} is the average porosity (10\%)
- ρ_{CO_2} is CO$_2$ density at reservoir conditions (0.73 tonnes/m3)
- E_{saline} is the efficiency factor (1\% and 4\% used, respectively)
Method II

- Uses average porosity from core analysis (ϕ_{core})
- Follows volumetric equation (DOE-NETL, 2010)

\[
SRE_{\text{CO}_2} = A_t \times h_g \times \phi_{\text{core}} \times \rho_{\text{CO}_2} \times E_{\text{saline}}
\]

Where:

A_t is the area of a given county

h_g is the average thickness, in the county, of unit under assessment

ϕ_{core} is the average porosity from core analysis

ρ_{CO_2} is CO$_2$ density at reservoir conditions (0.73 tonnes/m3)

E_{saline} is the efficiency factor (1% and 4% used, respectively)
Method III

- Consists of the processing of wireline-derived porosity (such as neutron, sonic, or density logs) in Petra Software to estimate SRE.

\[
SRE_{CO_2} = A_t * h_g * \phi_{log} * \rho_{CO_2} * E_{saline}
\]

Where:
- \(A_t\) is the area of a given county
- \(h_g\) is the average thickness, in the county, of unit under assessment
- \(\phi_{log}\) is the wireline-derived porosity
- \(\rho_{CO_2}\) is CO\(_2\) density at reservoir conditions (0.73 tonnes/m\(^3\))
- \(E_{saline}\) is the efficiency factor (1% and 4% used, respectively)
Method IV

- Uses depth-dependent porosity model based on the previous studies that suggest that porosity decreases with depth ($\phi(d) = A \cdot e^{-\text{depth} \cdot B}$)

\[
SRE_{CO_2} = A_t \ast h_g \ast \phi(d) \ast \rho_{CO_2} \ast E_{\text{saline}}
\]

Where:
- A_t is the area of a given county
- h_g is the average thickness, in the county, of unit under assessment
- $\phi(d)$ is porosity as a function of depth
- ρ_{CO_2} is CO_2 density at reservoir conditions (0.73 tonnes/m³)
- E_{saline} is the efficiency factor (1% and 4% used, respectively)
Method IV

\[SRE_{well} = \int_{z_{top}}^{z_{bottom}} \phi(z) \, dz = \int_{z_{top}}^{z_{bottom}} 0.1497 \times e^{-0.00023 \times z} \, dz \]

\[SRE = 650.8 \times (e^{-0.00023 \times z_1} - e^{-0.00023 \times z_2}) \]
Method V

- Uses data from Mercury Injection Capillary Pressure (MICP) to define petrofacies. These petrofacies have characteristics values of porosity (and permeability).

\[SRE_{CO_2} = A_t \times h_g \times \phi(\text{petrofacies}) \times \rho_{CO_2} \times E_{\text{saline}} \]

Where:
- \(A_t \) is the area of a given county
- \(h_g \) is the average thickness, in the county, of unit under assessment
- \(\phi(\text{petrofacies}) \) is porosity associated to petrofacies
- \(\rho_{CO_2} \) is \(CO_2 \) density at reservoir conditions (0.73 tonnes/m\(^3\))
- \(E_{\text{saline}} \) is the efficiency factor (1% and 4% used, respectively)
Method V

- Uses data from Mercury Injection Capillary Pressure (MICP) to define characteristic pore size distribution curve. An average porosity is derived from each type petrofacies.

<table>
<thead>
<tr>
<th></th>
<th>PF I</th>
<th>PF II</th>
<th>PF III</th>
<th>PF IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Porosity</td>
<td>9.7</td>
<td>4.4</td>
<td>3.9</td>
<td>3.6</td>
</tr>
<tr>
<td># of samples</td>
<td>6</td>
<td>20</td>
<td>20</td>
<td>18</td>
</tr>
</tbody>
</table>
Petrofacies in Cores

<table>
<thead>
<tr>
<th>Petrofacies</th>
<th>PF I</th>
<th>PF II</th>
<th>PF III</th>
<th>PF IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Porosity</td>
<td>9.7</td>
<td>4.4</td>
<td>3.9</td>
<td>3.6</td>
</tr>
<tr>
<td># of samples</td>
<td>6</td>
<td>20</td>
<td>20</td>
<td>18</td>
</tr>
</tbody>
</table>

Graph: $y = 8.7853x^{-0.723}$
$R^2 = 0.9064$
Method V

Each well is assumed a different scenario of abundance of petrofacies (porosity based on current study)

<table>
<thead>
<tr>
<th>Case</th>
<th>Petrofacies 1 ($\phi=9.7%$)</th>
<th>Petrofacies 2 ($\phi=4.4%$)</th>
<th>Petrofacies 3 ($\phi=3.9%$)</th>
<th>Petrofacies 4 ($\phi=3.6%$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each square represents 25% of the unit
Results
Unit II (Trenton/Black River): Results* (E = 4%)

Method 1 ($\phi = 10\%$)
Controlled by:
Thickness

Method 3 (porosity from wireline logs)
Controlled by:
Thickness and logs

Method 4 (diagenetic model).
Controlled by:
Depth and Thickness

*Method 2 (core analysis) has limited data to show in maps.
Unit III (St. Peter SS): Results (E = 4%)

Method 1
(constant porosity)

Method 3
(porosity from wireline logs)

Method 4
(diagenetic model)
Unit IV (Knox): Results (E = 4%)

Method 1 (constant porosity)

Method 3 (porosity from wireline logs)

Method 4 (diagenetic model)

Thickness-controlled SRE

Thickness-controlled SRE

Thickness and Depth-controlled SRE
Results: All Methods (Unit 4)

If we zoom-in here...

Method 5
Results: All Methods (Unit 4)

<table>
<thead>
<tr>
<th>Method</th>
<th>I</th>
<th>II*</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 4</td>
<td>Knox SG</td>
<td>512</td>
<td>14</td>
<td>477</td>
<td>512</td>
</tr>
</tbody>
</table>

*In method II, we averaged values of porosity when more of one well per county had core analysis.
How do these SREs compare with Emissions from Point Sources?

Total CO₂ emissions: 559 [MMTons/Year]*

*Source: NATCARB (2014)

Total SRE estimated using method IV (E=1%): 76,275 [MMTons]

More than 100 years worth of storage!**

** Further screening is necessary, such as min/max depth considerations, distance to source (pipeline), etc.
Reservoir Characterization: Isopach and Structure (Unit 4: Knox Supergroup and Equivalents)

But...

...Portions of the region do not meet the basic criteria (i.e. too shallow). A second analysis excluding those areas resulted in SRE for unit 4 (Knox and equivalents) using method IV is:

- **Blue**: Shallower than 2,500 ft.
- **Red**: Deeper than 10,000 ft.
Reservoir Characterization: Isopach and Structure (Unit 4: Knox Supergroup and Equivalents)

Total CO$_2$ emissions: 559 [MMTons/Year]*
Total SRE estimated using method IV (E=1%): 14,935 [MMTons] or 26-100 [yrs] [E=1-4%]

*Source: NATCARB (2014)
Conclusions [1/2]

• SRE in the MRCSP region suggest that, there is sufficient storage capacity in the carbonate reservoirs of the Cambrian-Ordovician to deploy CCUS in the Midwestern region. Considering CO₂ emissions from stationary sources in the region result in +100 years of storage.

• Methodologies suggest that using a single value for porosity of 10% (Method 1) or average porosity from wireline logs (Method 3) results in overestimation of SRE.

• Regional scale SREs could possibly benefit from the use of efficiency factors that incorporate increased accuracy in factors (A, h, ∅). These “intermediate” efficiency factors will increase to reflect the decrease in uncertainty (e.g. Peck et al, 2014).
Conclusions [2/2]

• These estimates do not include local factors that should be included in site-scale analysis (i.e., details of the local geology).

• Future work should incorporate dynamic aspects of reservoir performance during and after injection.

• This study is exploratory in nature and does not intend to determine which method is “better” or “worse than”, but rather, sets the stage for future consideration of integration of different methods based on robustness and availability. This is a good time, for example, to start considering the Variable Grid Method (VGM) introduced by NETL.
Hierarchical Evaluation of Geologic Carbon Storage Resource Estimates: Cambrian-Ordovician Units within the MRCSP Region

Thank you!

Questions?