PSCharacterizing a Mississippian Carbonate Reservoir for CO,-EOR and Carbon Sequestration: Applicability of
Existing Rock Physics Models and Implications to Feasibility of Time Lapse Monitoring Programs in the
Wellington Oil Field, Sumner County, Kansas*

Anthony Lueck®, Abdelomeam Raef!, and W. Lynn Watney?

Search and Discovery Article #80530 (2016)**
Posted May 9, 2016

* Adapted from poster presentation given at AAPG Mid-Continent Section Meeting, Tulsa, Oklahoma, October 4-6, 2015
**Datapages © 2016 Serial rights given by author. For all other rights contact author directly.

'Kansas State University, Manhattan, Kansas (anthonylueck@gmail.comx)
*Kansas Geological Survey, Manhattan, Kansas

Abstract

This study will characterize subsurface rock units of the Wellington Field in Sumner County, Kansas for both geosequestration of CO; in the
saline Arbuckle Group and enhanced oil recovery of a Mississippian oil reservoir. Multiscale data including lithofacies core samples, digital
rock physics scans, well log data and 3D seismic techniques will be integrated to establish or validate a new or existing rock physics model that
best represents our reservoir rock characteristics. We will acquire P-wave and S-wave velocity data from core samples by running ultrasonic
tests and compare them to sonic and dipole sonic log data from the Wellington 1-32 well. The elastic constants Young's Modulus, Bulk
Modulus, Shear Modulus and Poisson's Ratio will also be extracted. These data will be integrated to validate a lithofacies classification
statistical model which will be applied to the largely unknown Arbuckle Group with hopes for a connection, perhaps through Poisson's Ratio,
allowing a time-lapse seismic feasibility assessment and potentially developing a transformation of P-wave sonic velocities to S-wave dipole
sonic for all wells. We will also be testing our rock physics model by predicting effects of changing effective fluid composition on seismic
properties and the implications on feasibility of seismic monitoring. Lessons learned from characterizing the Mississippian are essential to
understanding the potential of utilizing similar workflows for the Arbuckle aquifer.
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CHARACTERIZING A MISSISSIPPIAN CARBONATE RESERVOIR FOR CO2-EOR AND CARBON GEOSEQUESTRATION: APPLICABILITY OF
EXISTING ROCK PHYSICS MODELS AND IMPLICATIONS FOR FEASIBILITY OF A TIME LAPSE MONITORING PROGRAM IN THE
WELLINGTON OIL FIELD, SUMNER COUNTY, KANSAS.

ABSTRACT

This study focuses on characterizing subsurface rock formations of the
Wellington Field, in Sumner County, Kansas, for both geosequestration of
carbon dioxide (CO,) in the saline Arbuckle formation and enhanced oil
recovery of a depleting Mississippian o1l reservoir. Multi-scale data including
lithofacies core samples, X-ray diffraction, well log data including sonic and
dipole sonic, and surface 3D seismic reflection data will be integrated in an
effort to establish and/or validate a new or existing rock physics model that
best represents our reservoir rock types and characteristics. We acquired
compressional wave velocity and shear wave velocity data from Mississippian
and Arbuckle cores by ultrasonic measurements of arrival times using an Ult
100 Ultrasonic System and a 12 ton hydraulic jack located in the geophysics
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METHODS

ADDITIONAL RESULTS

Core DM3829.5 20MHz and 1.25MHz Elastic Moduli. This and other data
will later be integrated as inputs to rock physics fluid replacement models.
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NEXT STEPS: FLUID REPLACEMENT MODELINA

We will next look 1nto testing as many applicable fluid replacement models as
available, though inputting data obtained from our dry core samples. These
will predict saturated values from dry cores; to validate which model is best,
we will compare the predictions to known data provided by well logs and
other sources. Equations for Gassmann, one model we’ll test, are displayed.
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