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Abstract 

 

There is no doubt that reservoir characterizations in different scales are critical in reservoir development and production 

optimization. Even through current technology and equipment reveal more and more details of core samples and enable 

geoscientists to understand the structure and elements of these samples, engineers from reservoir and production disciplines are 

still using traditional tools in reservoir simulation and well performance evaluation. For example, curve fitting technologies in 

rate forecast, which was originated in 1940s or earlier, are still being used in shale gas production forecast. This gap could be 

bridged via communication through different disciplines and calls for continuous research.  

 

This presentation highlights on the importance of pore size distribution in shale gas reservoirs and their impacts on quantifying 

resource and production and some recent progresses in shale gas reservoir rate forecasting technologies. Furthermore, how to 

close the gap so that the data from scientists could be used by engineers will be proposed through topics that needs joint research 

of the industry and academia. 
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The Relationship Among Science, Engineering, 
and Technology 
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GeoScience Engineering 

Objective: Develop/design 
engineered process for asset 
production  
 
Study objects: 
• Rock/fluid/steel 
• STOIP 
• Wells 
• Permeability/porosity/satur

ations 
• Pressure & rate 
• Cost 

 
Tool boxes: 
• Production performance 
• Reservoir simulation 
• Decline curves 
• Material balance 

 
Results: 
• Field development plan 
• D & C 
• Production strategy 
• Economic performance 

 
 

Objective: Understand the 
nature of subsurface 
 
Study objects: 
• Core 
• Outcrops 
• Solid/fluid samples 
• … 
 
Tool boxes:  
• Seismic 
• Elemental analysis 
• Well logging 
• … 

 
Results: 
• Reservoir structure 
• Petrophysical 

characterization 
• Where to place a well 

 
 

http://www.zazzle.com/ 



Outline 

1. Shale reservoir 
characterization 

2. How much 
hydrocarbon in 
the pores? 

3. Production 
performance 

4. Closing Remarks 
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After USGS 2005 



Status and Projection of Unconventional Assets 
in USA 
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(EIA, 2013) 

 Typically large areas 
 Relatively thin (± 15m) to quite thick (300m+) 
 Low porosity, low permeability, requires fracing 
 Vertically and laterally complex 



Pore Size in Rocks: Nelson Pore/Molecule Size 
Chart 
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Source: Nelson, 2009, AAPG Bulletin 

Engineer cares: 

1. How does the fluid store? 

• In the organic matter? 

• Adsorbed? 

2. How does the fluid flow? 

• Darcy’s flow? 

• Dispersion? 

• Knudsen flow? 

 



PSD for Tight Formation (Shale) 
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More than 80% Pore Size 
has a radius less than 10 nm 

CO2 CH4 

http://scienomics.com/Adsorption-of-gases-in-porous-media-using-Grand-
Canonical-Monte-Carlo 
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PSD Changes Fluid Properties 
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Sorption, Pore Condensation and Hysteresis Behavior of a Fluid in 
a Single Cylindrical Mesopore 

From: M Thommes, “ Physical adsorption characterization of  ordered and amorphous mesoporous materials”, Nanoporous Materials- Science 
and Engineering” (edited by Max Lu, X.S Zhao), Imperial College Press, Chapter 11, 317-364 (2004) 
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Slide 9 

Empirical Models 

• Langmuir 
 
• Brunauer-Emmet-Teller 

(BET) model 
 

Theoretical Models 

• Molecular Dynamic 
Simulations (MDS) 
 

• Grand Canonical Monte Carlo 
Simulations (GCMC) 

Easy to use 
 
Limited Scope 
 

+ 
- 

Theoretically Sound 
 
Computationally intensive 
 

+ 
- 

Simplified Local 
Density Model        

(SLD)  
 

Method to Study Adsorption Effect in Shale 
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Local Density Calculation with PR-EOS 
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SLD-PR EOS and MICP Workflow 
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• Construct pore size distribution from Young’s equations 
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0 

 𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

d𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑖𝑖 ,𝑛𝑛𝑛𝑛 
𝑟𝑟𝑖𝑖 = 𝑟𝑟 

• Apply SLD-Peng-Robinson algorithm for each 
pore size radius 

• Determine average adsorbed phase density 

• Acquire incremental intrusion curve from core samples 

OGIP = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐺𝐺𝐺𝐺𝐺𝐺 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 (𝐺𝐺𝑓𝑓) + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 (𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎) 

𝑮𝑮𝒇𝒇 = 𝒇𝒇(𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫) 

+ 

𝑮𝑮𝒂𝒂𝒂𝒂𝒂𝒂 = 𝒇𝒇(𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫) 
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∅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 
 

SLD-PR 
OGIP  = 

• Determine OGIP 

Paper # 176992 •  Xingru Wu  



Multicomponent OGIP Esimation 
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C1 61.9% 
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Petrophysical Properties for OGIP 
Determination 

Parameters Values Units 
Total Porosity, φT 5.5%   
Kerogen Porosity 

(organic) 3.5%   

InOrganic Porosity 2.0%   
Water Saturation, Sw 25%   

Rock density 2.5 g/cm3 

Paper # 176992 •  Xingru Wu  



Sensitivity Study (OGIP) 
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Case μ, nm Micro Meso Macro 
Case 1 2.5 47% 53% 0% 
Case 2 5 18% 81% 1% 
Case 3 15 0% 87% 12% 
Case 4 40 0% 13% 87% 

• At high pressures, more small 
pores correlate to more gas 
in place 

• At low pressures, OGIP 
estimates are similar 

• Neglecting pore size 
distribution can yield over 
40% errors in OGIP values 
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Production Performance-Common Approach 
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Blasingame,2011 



Miscrofactures in Shale 
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Shale-Matrix model with microfractures(Apaydin et al., 2011) 



Pressure-Dependent Fracture Permeability 
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Cho, 2011 

𝑘𝑘𝑓𝑓 = 𝑘𝑘𝑓𝑓𝑓𝑓 exp −𝑑𝑑𝑓𝑓Δ𝑝𝑝𝑓𝑓  



Predicting EUR from Production Data 
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Currie et al., 2010 
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 Enable fast history match 
 Visualize what’s in the model  
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Method 2: Concept of Reservoir Storage 
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Framework for well performance 
characterization & prediction   
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 Estimate reservoir pressure 
 Facilitate history match  
 Evaluate skin variation  

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E-02 1.00E+00 1.00E+02 1.00E+04 1.00E+06

Time,  hours

D
P

, T
D

P
D

T,
 p

si
/(s

tb
/d

)

dp History

tdpdt History

dp Forecast

tdpdt

0
2
4
6
8

10
12
14
16
18
20

0 2000 4000 6000
ncop, stb/psi

n_
ra

te
, s

tb
/d

/p
si

History from
Production
history from
Shutdown
prediction

0

500

1000

1500

2000

2500

3000

3500

4000

0.00 50.00 100.00 150.00
Time, days

C
on

ne
ct

ed
 e

ne
rg

y,
 s

tb
/p

si

History from
Shutdown

• Well performance diagnosis 

• Rate forecasting 

• Rate forecasting 

• Startup simulation  

• Short-term production optimization 

• Represent well performance from 
complex models 
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