Characterize Shale Reservoir for Engineers*
Xingru Wu*

Search and Discovery Acrticle #80523 (2016)**
Posted March 14, 2016

*Adapted from oral presentation given at AAPG-SPE Joint Forum, Reality-Based Reservoir Development: New Teams, Techniques, Technologies,
Oklahoma City, Oklahoma, September 23, 2015
**Datapages © 2016 Serial rights given by author. For all other rights contact author directly.

YUniversity of Oklahoma, Norman, OK (xingru.wu@ou.edu)

Abstract

There is no doubt that reservoir characterizations in different scales are critical in reservoir development and production
optimization. Even through current technology and equipment reveal more and more details of core samples and enable
geoscientists to understand the structure and elements of these samples, engineers from reservoir and production disciplines are
still using traditional tools in reservoir simulation and well performance evaluation. For example, curve fitting technologies in
rate forecast, which was originated in 1940s or earlier, are still being used in shale gas production forecast. This gap could be
bridged via communication through different disciplines and calls for continuous research.

This presentation highlights on the importance of pore size distribution in shale gas reservoirs and their impacts on quantifying
resource and production and some recent progresses in shale gas reservoir rate forecasting technologies. Furthermore, how to
close the gap so that the data from scientists could be used by engineers will be proposed through topics that needs joint research
of the industry and academia.
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Status and Projection of Unconventional Assets
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e Typically large areas

e Relatively thin (x 15m) to quite thick (300m+)
e Low porosity, low permeability, requires fracing
« Vertically and laterally complex




Chart

Pore Size In Rocks: Nelson Pore/Molecule Size

Source: Nelson, 2009, AAPG Bulletin
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PSD for Tight Formation (Shale)
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PSD Changes Fluid Properties
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Sorption, Pore Condensation and Hysteresis Behavior of a Fluid in
a Single Cylindrical Mesopore
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From: M Thommes, “ Physical adsorption characterization of ordered and amorphous mesoporous materials”, Nanoporous Materials- Science
and Engineering” (edited by Max Lu, X.S Zhao), Imperial College Press, Chapter 11, 317-364 (2004)
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Method to Study Adsorption Effect in Shale

Empirical Models Theoretical Models
--Easy to use -+ Theoretically Sound
— Limited Scope _  Computationally intensive

 Molecular Dynamic

« Langmuir _ _
Simulations (MDYS)

e Brunauer-Emmet-Teller

(BET) model  Grand Canonical Monte Carlo

Simulations (GCMC)

Simplified Local
Density Model
(SLD)




Local Density Calculation with PR-EOS
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SLD-PR EOS and MICP Workflow

Incremental Mercury Injection Curve for Gas Shale

Pore Size Distribution

VVin
PV
.I

Normalized
Incremental
Intrusion

Incremental Intrusion PVin

L 4

L 4

*
Pressure (psi)

* Acquire incremental intrusion curve from core samples

Pore Throat Radius, r
e Construct pore size distribution from Young’s equations
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Multicomponent OGIP Esimation
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Sensitivity Study (OGIP)
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Production Performance-Common Approach

= Estimated Ultimate Recovery (EUR)
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Miscrofactures in Shale
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Pressure-Dependent Fracture Permeability
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Predicting EUR from Production Data

the Hyperbolic Relation
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Method 2: Concept of Reservoir Storage
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Framework for well performance
characterization & prediction
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Closing Remarks

e Engineers care about (1) how much fluids are in place; (2)
how fast can they be produced.

» Rocks with the same pore volume do not necessarily
the same OGIP with the same pressure.

e Production forecast:
More data and better models
Flow mechanisms are NOT clear! New methods are required

Reservoir storage model looks promising!
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