# Browse Basin 2014 Marine Survey - Investigating Containment for Potential Late Cretaceous CO<sub>2</sub> Storage Plays\*

Chris Nicholson<sup>1</sup>, Rowan Romeyn<sup>1</sup>, Megan Lech<sup>1</sup>, Steve T. Abbott<sup>1</sup>, George Bernardel<sup>1</sup>, Andrew Carroll<sup>1</sup>, David Caust<sup>1</sup>, Emmanuelle Grosjean<sup>1</sup>, Ron Hackney<sup>1</sup>, Floyd Howard<sup>1</sup>, Rachel Melrose<sup>1</sup>, Scott Nichol<sup>1</sup>, Lynda Radke<sup>1</sup>, Nadege Rollet<sup>1</sup>, Justy Siwabessy<sup>1</sup>, and Janice Trafford<sup>1</sup>

Search and Discovery Article #80511 (2016)\*\*
Posted February 1, 2016

\*Adapted from oral presentation given at AAPG/SEG International Conference & Exhibition, Melbourne, Australia, September 13-16, 2015 \*\*© Commonwealth of Australia (Geoscience Australia) 2016.

With the exception of the Commonwealth Coat of Arms and where otherwise noted, this product is provided under a Creative Commons Attribution 4.0 International Licence. <a href="http://creativecommons.org/licenses/by/4.0/legalcode">http://creativecommons.org/licenses/by/4.0/legalcode</a>

<sup>1</sup>Geoscience Australia, Canberra, ACT, Australia (chris.nicholson@ga.gov.au)

#### **Abstract**

Geoscience Australia conducted a marine survey in the Caswell Sub-basin of the Browse Basin, offshore Western Australia, in late 2014 to investigate containment questions relating to the potential long-term geological storage of CO<sub>2</sub>. The survey aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may suggest the presence of deep plumbing systems which could compromise seal integrity. Prior to the survey, 2D and 3D seismic data were used to map fault networks connecting the Aptian regional seal to the sea floor and any associated amplitude anomalies. This mapping informed survey site selection aimed at testing seal integrity over Maastrichtian, Campanian, Valanginian and Barremian submarine fans in the Caswell Sub-basin, and up-dip migration and leakage of hydrocarbons, via channels and basin margin faults, such as the Heywood Fault, into shallow marine sands on the eastern shelf margin.

Vessel and Autonomous Underwater Vehicle (AUV) multibeam bathymetry and sub-bottom profiler systems confirmed the presence of recently active faults in the area, some with significant seafloor surface expression (up to 40 m offset). A subset of

these faults was visually inspected with a Remotely Operated Vehicle (ROV) which also confirmed the presence of diverse biological communities. Indications of shallow gas were observed on sub-bottom profiles, including amplitude anomalies, crosscutting reflectors and zones of signal starvation. Water column observations including sidescan sonar, single-beam and multibeam echosounders, underwater video and photography did not conclusively identify hydrocarbon or other fluid seepage. Strong currents encountered during parts of the survey may have interfered with the direct detection of seeps in the water column. However, headspace gas and high-molecular weight hydrocarbon analysis from shallow cores also provided no evidence for migrated thermogenic gas or oil. While no active signs of seepage were observed, the geochemical and biological sampling undertaken will aid in baseline environmental investigations for this region.

#### **References Cited**

Abbott, Steve T., David Caust, Nadege Rollet, Megan E. Lech, Rowan Romeyn, Karen Romine, Kamal Khider, and Jane Blevin, 2015, Seven Cretaceous low-order depositional sequences from the Browse Basin, North West Shelf, Australia: A framework for CO<sub>2</sub> storage studies: AAPG/SEG International Conference & Exhibition, Melbourne, Australia, September 13-16, 2015, Abstract. http://www.searchanddiscovery.com/abstracts/html/2015/90217ice/abstracts/2210781.html

Abrams, M.A., 2005, Significance of hydrocarbon seepage relative to petroleum generation and entrapment: Marine and Petroleum Geology, v. 22, p. 457-477.

Le Poidevin, S.R., T.J. Kuske, D.S. Edwards, and P.R. Temple, 2015, Australian petroleum accumulations Report 7 Browse Basin: Western Australia and Territory of Ashmore and Cartier Islands adjacent area, 2nd edition, Record 2015/010, Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2015.010

Lech, Megan E., Nadege Rollet, David Caust, and Karen Romine, 2015, Paleogeographic evolution of Early Campanian to Maastrichtian supersequences in the Caswell Sub-Basin - Implications for CO<sub>2</sub> storage and hydrocarbon entrapment: AAPG/SEG International Conference & Exhibition, Melbourne, Australia, September 13-16, 2015, Abstract. <a href="http://www.searchanddiscovery.com/abstracts/html/2015/90217ice/abstracts/2210771.html">http://www.searchanddiscovery.com/abstracts/html/2015/90217ice/abstracts/2210771.html</a>

Rollet, Nadege, Steve T. Abbott, Megan E. Lech, David Caust, Rowan Romeyn, Karen Romine, Jane Blevin, Kamal Khider, Chris Nicholson, Emmanuelle Grosjean, Richard F. Kempton, Eric Tenthorey, Jennifer Totterdell, Victor Nguyen, Liuqi

Wang, and Ron Hackney, 2015, Cretaceous stratigraphic play fairways and risk assessment in the Browse Basin: Implications for CO<sub>2</sub> storage: AAPG/SEG International Conference & Exhibition, Melbourne, Australia, September 13-16, 2015, Abstract. http://www.searchanddiscovery.com/abstracts/html/2015/90217ice/abstracts/2210789.html





# Browse Basin 2014 Marine Survey – Investigating Containment for Potential Late Cretaceous CO<sub>2</sub> Storage Plays

Nicholson, C., Romeyn, R., Lech, M., Abbott, S., Bernardel G., Carroll, A., Caust, D., Grosjean, E., Hackney, R., Howard, F., Melrose, R., Nichol, S., Radke, L., Rollet, N., Siwabessy, J., Trafford, T.

Geoscience Australia, GPO Box 378, Canberra ACT 2601, AUSTRALIA, +61 (0)2 6249 9111, <a href="mailto:chris.nicholson@ga.gov.au">chris.nicholson@ga.gov.au</a>





Government funded NCIP program (2011/12-15) to investigate potentially suitable areas for CO<sub>2</sub> storage proximal to major emission

sources





- Large undeveloped gas resources
  - 36 Tcf of gas and 1148 MMbbl of condensate
- Production infrastructure is in development for the Ichthys and Prelude fields
- Gas accumulations high in CO<sub>2</sub> (~ 8%)
- As production begins suitable sequestration options may be required
- Looking to build on past studies which identify potential options for geological storage of CO<sub>2</sub> (GEODISC, CO2CRC)



- Large undeveloped gas resources
  - 36 Tcf of gas and 1148 MMbbl of condensate
- Production infrastructure is in development for the Ichthys and Prelude fields
- Gas accumulations high in CO<sub>2</sub> (~ 8%)
- As production begins suitable sequestration options may be required
- Looking to build on past studies which identify potential options for geological storage of CO<sub>2</sub> (GEODISC, CO2CRC)

Browse Basin is prospective and relatively underexplored --> many remaining questions!

- Understanding the source of natural gas and CO<sub>2</sub> in the Browse Basin is important
- Understanding which source rocks charged hydrocarbon accumulations is fundamental to future exploration success



#### Browse Basin Petroleum Systems



Westralian 1 + 2
Jurassic – Early Cretaceous
Plover + Vulcan (thick)

Westralian 1 + 2
Jurassic
Plover + Lower Vulcan

Westralian 1
Early – Middle Jurassic
Plover

Le Poidevin, S.R., Kuske, T.J., Edwards, D.S. & Temple, P.R., 2015. Australian Petroleum Accumulations Report 7 Browse Basin: Western Australia and Territory of Ashmore and Cartier Islands adjacent area, 2nd edition. 2 ed. Record 2015/010. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2015.010

An integrated study into CO<sub>2</sub> storage potential and hydrocarbon prospectivity

Basin analysis and sequence stratigraphic studies

- Reservoir seal plays suitable for CO<sub>2</sub> storage
- Factors impacting seal integrity
- Potential conflicts between CO<sub>2</sub> storage and petroleum resources
- **Rollet et al.** Cretaceous stratigraphic play fairway assessment in the Browse Basin: Implications for CO<sub>2</sub> storage.
- **Abbott et al.** Seven Cretaceous Low-Order Depositional Sequences From the Browse Basin, NWS, Australia: A Framework for CO<sub>2</sub> Storage Studies.
- Lech et al. Palaeogeographic Evolution of Early Campanian to Maastrichtian Supersequences in the Caswell Sub-Basin – Implications for CO<sub>2</sub> Storage and Hydrocarbon Entrapment

An integrated study into CO<sub>2</sub> storage potential and hydrocarbon prospectivity



• **Grosjean et al.** – The Source of Oil and Gas Accumulations in the Browse Basin, North West Shelf of Australia: A Geochemical Assessment

An integrated study into CO<sub>2</sub> storage potential and hydrocarbon prospectivity

Basin analysis and sequence stratigraphic Reservoir seal plays suitable for CO<sub>2</sub> storage studies Factors impacting seal integrity Potential conflicts between CO<sub>2</sub> storage and petroleum resources **Geochemical studies**  Understand source rock distributions and their potential to generate hydrocarbons Define petroleum systems and their extent Origin of CO<sub>2</sub> in Plover/Brewster reservoirs? Investigate modern seepage that may compromise storage 2013 and 2014 Browse sampling surveys prospectivity Collect environmental baseline data before storage activities

# Browse Basin 2014 Marine Survey – Investigating Containment for Potential Late Cretaceous CO<sub>2</sub> Storage Plays





#### **Browse Basin 2014 Marine Survey**

- Undertaken in three legs between October and November 2014
- Aboard RV Tangaroa (New Zealand National Institute of Water and Atmospheric Research NIWA)
- Technical staff from Geoscience Australia, NIWA and Fugro Survey Pty Ltd.



#### **Survey Objectives**

- To collect pre-competitive data to support a CO<sub>2</sub> storage assessment in the Browse basin
- Investigate modern seepage over CO<sub>2</sub> storage plays that may:
  - compromise storage prospectivity, or
  - help better understand petroleum systems
- Collect environmental baseline data before storage activities



#### Features targeted during the survey

#### Direct seepage evidence



water column gas flares

# Sub surface fluid indicators



Amplitude anomalies above shallow faults

# Deep plumbing faults



Seafloor – reservoir connectivity

#### Potential seafloor seepage indicators



Drowned lowstand coral atoll



Pock marks

### Baseline seabed environments





Biology, geomorphology, sedimentology & geochemistry

Fluid migration

associated with

palaeo-channels

pathways



- Multibeam bathymetry
- backscatter/side scan sonar





- Multibeam bathymetry
  - backscatter/side scan sonar
- Sub bottom profiler
- Water column (Single + multi beam echo sounder)









- Multibeam bathymetry
- backscatter/side scan sonar
- Sub bottom profiler
- Water column (Single + multi beam echo sounder)
- AUV mapping
- ROV investigation



- Multibeam bathymetry
- backscatter/side scan sonar
- Sub bottom profiler
- Water column (Single + multi beam echo sounder)
- AUV mapping
- ROV investigation
- Piston core and box core
- Geochemical sampling (headspace gas, GC, inorganic geochemistry, sedimentology, biology)
- ROV push cores
- ROV gas-tight fluid sampling
  - Rock/sediment sampling

- 1. Reservoir seal pairs
- 2. Seal distribution
- 3. Optimum reservoir suitability (800–3000 m depth)
- 4. Seal integrity (e.g., fault reactivation, sand connectivity)
- 5. Hydrocarbon conflicts



- 1. Reservoir seal pairs
- 2. Seal distribution
- 3. Optimum reservoir suitability (800–3000 m depth)
- 4. Seal integrity(e.g., fault reactivation, sand connectivity)
- 5. Hydrocarbon conflicts



- 1. Reservoir seal pairs
- 2. Seal distribution
- 3. Optimum reservoir suitability (800–3000 m depth)
- 4. Seal integrity(e.g., fault reactivation, sand connectivity)
- 5. Hydrocarbon conflicts

#### Browse Basin Petroleum Systems





- Impact of faulting on seal integrity above potential Maastrichtian and Campanian reservoirs
- 2. Up-dip migration along inboard reactivated faults from a variety of early and late Cretaceous plays
- Seepage associated with the northern extent of Cretaceous hydrocarbon charge





- 17 survey sites selected to test these scenarios
- 3 additional sites selected on survey
- Sites were selected based on faults observed on the seafloor and in seismic data that may:
  - form conduits between mapped reservoirs and seafloor
  - Access charge from source kitchen

#### **Data collected**

- Data was collected from 12 of the preselected sites and 3445 km<sup>2</sup> of seabed was mapped in water depths ranging from 90 to 490m
- 41 piston cores acquired

| Data Type                    | Units           | Total Amount |
|------------------------------|-----------------|--------------|
| Multibeam (survey)           | km²             | 755          |
| Multibeam (transit)          | km²             | 2990         |
| Multibeam ( total)           | km²             | 3445         |
| Sub-bottom Profile (survey)  | km              | 611          |
| Sub-bottom Profile (transit) | km              | 5099         |
| Sub-bottom Profile (total)   | km              | 5711         |
| Smith McIntyre Grab          | No.             | 99           |
| Piston Core                  | No.             | 41           |
| AUV Multibeam                | km <sup>2</sup> | 7.7          |
| ROV Missions                 | No.             | 22           |
| AUV Sub-bottom Profile       | km              | 71           |
| AUV Side-scan Sonar          | km              | 71           |
| AUV Camera                   | km              | 39           |
| ROV Grab                     | No.             | 8            |
| ROV Push-core                | No.             | 1            |



#### Results – coring



- Northern extent of Cretaceous charge
- Seal integrity for Maastrichtian sands



Water column flare above fault observed in MB data

Honeycomb pock like features about shallow fault trace

#### Results – coring

- 41 cores recovered
- Cores collected using 6m long gravity core
- Cores cut into 1 m sections
- Lower 20 cm of each 1m core section samples for geochemical analysis







#### Results – Geochemical analyses for hydrocarbon seepage detection

Headspace gas analysis of core sediments: interstitial gases C<sub>1</sub>-C<sub>5</sub>



#### Techniques well established:

best methods for seep sampling, detection and interpretation

#### Results – Headspace gas data in cores

# Total Alkane Gas concentration (C1-C5 in ppmV) Browse TAN1411

- Sampled C<sub>1</sub>-C<sub>5</sub> concentrations up to 14 ppmV
- Background levels < 1000 ppmV (for GoM) (Abrams, 2005)
- All Browse sample concentrations are below background levels

Abrams, M.A., 2005. Significance of hydrocarbon seepage relative to petroleum generation and entrapment. Marine and Petroleum Geology 22, 457-477.

#### Headspace gas: comparison with other surveys



Comparison with Arafura survey S282 where CH<sub>4</sub> concentrations of up to 70,000 ppmV were found

- These elevated concentrations were found to be biogenic in origin
- Browse survey data showed no evidence for biogenic methane or migrated thermogenic gases
- Therefore there is no geochemical evidence for seepage associated with the northern extension of Cretaceous hydrocarbon charge



 Seafloor and subsurface data suggest recent faulting could impact seal integrity above potential Maastrichtian and Campanian reservoirs

Bathymetry confirms deep plumbing fault connectivity implied in seismic data and recent fault activity







Faults observed are steep with up to 40 m offset at the sea floor



- Geomechanical analysis of wells reveals strike slip stress regime
- ESE-WNW and ENE-WSW faults have the highest reactivation risk



Geomechanical analysis – Current Stress Field - S<sub>Hmax</sub> Orientation

1m high resolution AUV bathymetry provides evidence of fault activity today!







Synthetic faults divided by accommodation zones

En echelon faulting

Relay ramps

Rider blocks





Steep offsets

Hanging wall fractures



# Backscatter and support recent fault uplift



**ROV** footage of fault scarp in outcrop



#### **Conclusions**

 No geochemical evidence for seepage associated with the northern extent of Cretaceous hydrocarbon charge or up-dip migration to basin margins was detected

 However resource conflicts may still exist between hydrocarbons and potential Cretaceous storage reservoirs

 Recent deep plumbing fault activity is likely to impact seal integrity above potential Maastrichtian and Campanian storage reservoirs

#### Survey data and post survey report soon to be released by Geoscience Australia

A Marine Survey to Investigate Seal Integrity Between Reservoirs and Shallow Geology/Seafloor in the Caswell Sub-Basin, Browse Basin, Western Australia:





#### **Acknowledgements**



GA Team onboard: Ron Hackney, Lynda Radke, Scott Nichol, Janice Trafford, Megan Lech, Justy Siwabessy, Rachel Melrose, George Bernardel, Floyd Howard, Andrew Carroll, Rowan Romeyn

Ships crew: NIWA (NZ), AUV/ROV operators: Fugro

GA shore based staff: Matt Carey, Ian Atkinson, Craig Wintle, Jessica Gurney, John Pugh, Nadege Rollet, Steve Abbott, Dave Caust, Kim Picard, Tanya Whiteway, Melissa Fellows, Rachel Przeslawski, Anna Potter, Maggie Tran

Support from: IT, Finance, HR, GA Repository