Petroleum Exploration in Geologically Complex Areas: Opportunities for Geochemical and Non-Seismic Hydrocarbon-Detection Methods*

Dietmar Schumacher¹ and Luigi Clavareau¹

Search and Discovery Article #80505 (2016)**
Posted January 18, 2016

*Adapted from oral presentation given at AAPG International Conference & Exhibition, Melbourne, Australia, September 13-15, 2015.
Editor’s note: Please refer to two closely related articles, Search and Discovery Article #80504 (2016) and Article #80503 (2016).
**Datapages © 2016 Serial rights given by author. For all other rights contact author directly.

¹E&P Field Services, Mora, New Mexico (deet@enp-services.com)

Abstract

The petroleum potential of geologically complex areas — such as highly faulted and folded terranes — is often poorly known due to technical challenges affecting seismic acquisition and imaging. When these areas occur in jungles and highlands, the logistical challenges only add to the difficulty of evaluating the petroleum potential of such terranes. For such areas, surface geochemical and non-seismic hydrocarbon-detection methods provide an opportunity to reliably detect and map the elevated hydrocarbon concentrations and hydrocarbon-induced changes commonly associated with undiscovered oil and gas accumulations. It has long been known that (1) all petroleum basins exhibit some type of near-surface hydrocarbon leakage, (2) that petroleum accumulations are dynamic and their seals imperfect, (3) that hydrocarbon seepage can be active or passive, and that it can be visible (macroseepage) or only detectable analytically (microseepage). The surface and near-surface expressions of hydrocarbon migration and seepage can take many forms, ranging from elevated hydrocarbon concentrations in soils to complex mineralogic, microbial, and geophysical changes. While such hydrocarbon leakage does not require significant faulting and fracturing, the common presence of faults and fractures in structurally complex and tectonically active terranes provides additional migration pathways for hydrocarbon seepage and microseepage. Hydrocarbon-detection surveys in geologically complex areas require careful planning, close sample spacing, and are most effective when results are integrated with satellite remote sensing data and available geophysical data. Such surveys are ideally suited for an early stage evaluation since they can quickly identify those parts of the area possessing the highest petroleum potential, as well as determine the characteristics of petroleum in the areas of interest. The inclusion of hydrocarbon-detection surveys early in an exploration strategy focuses
attention and resources on a relatively small number of high-potential areas, thereby minimizing both risks and expenses. The presentation illustrates examples from Asia and South America.

Reference Cited

PETROLEUM EXPLORATION IN GEOLOGICALLY COMPLEX AREAS:
OPPORTUNITIES FOR GEOCHEMICAL AND NON-SEISMIC HYDROCARBON DETECTION METHODS

Dietmar (Deet) Schumacher and Luigi Clavareau
E&P Field Services (France, Malaysia, USA)
OUTLINE

• Characteristics of Geologically Complex Areas
• Why Hydrocarbon Detection Surveys
• Survey Methods for Geologically Complex Areas
• Survey Objectives and Design Considerations
• Selected Exploration Examples
• Conclusions
GEOLOGICALLY COMPLEX AREAS

ADVANTAGES – MORE LEAKAGE POINTS: FAULTS, FRACTURES, OUTCROPS, ACCUMULATIONS, MATURE, SOURCE ROCKS, SEEPS

LIMITATIONS – MORE LEAKAGE POINTS, MORE “ANOMALIES”; INTERPRETATION CHALLENGES; LOGISTICAL CHALLENGES, FAULT SURFACE EXPRESSIONS YIELD BIGGEST ANOMALIES
Microseepage Characteristics

Detailed geochemical surveys and research documents that hydrocarbon microseepage from oil and gas accumulations is Common and Widespread

Predominantly Vertical

Dynamic (1-3+ m/d)
HYDROCARBON DETECTION

• REMOTE SENSING, SATELLITE IMAGERY
 - detects hydrocarbon-induced alteration, oil slicks

• AEROMAGNETICS, MICROMAGNETICS
 - detects hydrocarbon-induced alteration

• SOIL GAS, FLUORESCENCE
 - hydrocarbon concentration and composition

• MICROBIOLOGICAL
 - measures HC-oxidizing bacteria

• PASSIVE ELECTROMAGNETICS, TELLURICS
 - depth to hydrocarbon-bearing zones
SURVEY DESIGN CONSIDERATIONS

- Survey Objectives
- Target Size, Shape
- Geologic Setting
- Topography, Vegetation
- Logistical Considerations
- Data Integration
- Ability to Sample Along & Between Seismic Lines
- Geologic Analogs for Calibration
- Permitting
- Environmental Issues
- Security Concerns
- Prior Experience
• Oil and Gas Seeps, if present
• Along & Across Faults and Fracture Zones
• Gravity Lows (Basin Depocenter?)
• Structural Highs (Possible Traps)
• Possible Seep-Induced Soil/Sediment Alteration
• Along Regional Seismic Lines, if available
• Geologic Analogs (both productive and dry)
• Regional Survey Lines or Grids, depending on terrain and logistical considerations
PLANNING THE SURVEY -- GRAVITY AND MAGNETIC DATA
Acquire samples across both the highs and the lows
PLANNING THE SURVEY – AIR PHOTOS AND SATELLITE DATA
Hydrocarbon Survey Documented Liquid HC Potential only in SE

A Powerhouse Emerges: Energy for the Next Fifty Years

PAKISTAN
MASILA BASIN, YEMEN

A Powerhouse Emerges: Energy for the Next Fifty Years

Shallow Sorbed Soil Gas / Methane (C₁) vs. Sum C₂ - C₄

Fe, Clay Alteration

Sample

Concentration, ppm

0 100 200 300 400 500 600

Methane (C₁) Values
Sum C₂ - C₄ Values
Alteration Anomaly

Sorbed Soil Gas (SSG) Analysis
C₁/(C₂+C₃) vs C₃/(C₃+C₄)

BIODIGENIC GAS
MIXED DEEP GAS
SINGLE DRY GAS
CONDENSATE
OIL
ALTERED

SOURCE ROCK
South Oman

Reconnaissance geochemical survey of 70,000 km² in Blocks 6, 36, 37, and 38. Samples collected at 250m intervals along 2900 line km of pre-existing seismic lines. Results documented the presence of two petroleum systems and several geochem leads.
CHAD SURVEYS: EXAMPLES

Microbial Method

3 Blocks surveyed
Samples: +1,000
Analytical Cost: +/- 100,000 USD
Results: one block relinquished due to low prospectively
The survey results guided the client on what to do next. First well was a discovery
Eastern Venezuela Basin, QLC Block

PROSPECT EVALUATION
Microbial and Soil Gas analysis
• Identified 4 major anomalous areas
• Good Correlation with wells
• Kundji 202, 203, 204 & 206

Samples: +2200
Analytical Cost: +/- 250,000 USD
Results: PRODUCTION LIMITS DEFINED, Several drilling prospects cancelled due to low prospectively
Results guided the design of a 3D seismic program; new wells planned for sites favorable on both 3D and geochemistry
INDONESIA EXAMPLE
KALIMANTAN

2 Prospects surveyed
Samples: +700
Analytical Cost: +/- 80,000 USD
Results: one drilling prospect relinquished due to low prospectively
One prospect selected for drilling

UPDATE: Oil Discovery on the remaining prospect
Presenter's Note: Profile of microbial values, in particular, shows the main anomaly, the effect of the river, and the anomaly due to the fault.
DEEP WATER BASINS. INDONESIA

• Survey large area to document presence of petroleum system and characterize it geochemically

• High-grade basin, play, concession on basis of hydrocarbons

• Guide geophysical surveys to minimize seismic costs

• Determine if area is oil-prone, gas-prone, or both
Deep-Water Petroleum Systems of Indonesia

Figure 5 - Map of Indonesian crude oil families and sea-floor seeps
From Noble et al., 2009, IPA Proceedings
SEEP-INDUCED MAGNETIC ANOMALIES
Mensa and Thunder Horse Fields; Mississippi Canyon Area, Gulf of Mexico;
Water Depth: 1675 – 1980 m
GEOLOGICALLY COMPLEX AREAS

Variety of remote sensing, geochemical, and non-seismic hydrocarbon detection methods available

Document presence of petroleum system(s) and/or hydrocarbon charge to specific prospects

High-grade basin or concession based on its hydrocarbon potential

Identify priority targets or areas for seismic surveys

Geologically complex areas have more hydrocarbon leakage points and are more challenging to interpret
Thank You

Dietmar (Deet) Schumacher
deet@enp-services.com