Following Seismic Depth Imaging Technology for the Mexican Oil Industry: Experiences and Lessons Learned*

Sergio Chávez-Pérez¹, Mario A. Centeno-Miranda³, Douglas A. Gómez-Reyes², and Liliana Vargas-Meleza²

Search and Discovery Article #70232 (2016)**
Posted December 12, 2016

*Adapted from oral presentation given at AAPG 2016 International Conference and Exhibition, Cancun, Mexico, September 6-9, 2016

Abstract

We have followed seismic depth imaging technology for the Mexican oil industry (Instituto Mexicano del Petróleo, IMP, and Petróleos Mexicanos, PEMEX) for several years. As researchers and practitioners, getting to know the latest advances and the road ahead in geophysical technologies is always of paramount importance. Mostly, while following university research consortia and technical literature, and attending technical meetings and workshops. This paper outlines experiences and lessons learned from what did work and did not work for us when trying to facilitate communication between geologists and geophysicists. As technology followers, we provided a communication channel to catch up with the latest techniques and to understand the theory behind them, also provided technical assistance to IMP and PEMEX practitioners and researchers during the lapse 2009-2015. In particular, we focused on seismic imaging tools like RTM (reverse time migration) LSRTM (least squares RTM), layer-based and grid-based tomography, FWI (full waveform inversion), and methods of frequency enhancement during advanced seismic imaging. The vogue is to use available technology to obtain reliable images of the subsurface. Our objective is to improve the understanding of Mexican geoscientists about the fundamentals underlying such imaging tools and, thus, strengthen their judgment to select appropriate technologies suitable for their particular problems. We believe geoscientists can benefit from this discussion given the increasing availability of depth-migrated data in the Mexican oil industry.

Reference Cited

Chávez-Pérez, S., and L. Vargas-Meleza, 2008, Enhanced Imaging Workflow of Seismic Data from Chicontepec Basin, Mexico: The Leading Edge, v. 27/3, p. 352-359.

^{**}Datapages © 2016 Serial rights given by author. For all other rights contact author directly.

¹Instituto Mexicano del Petróleo (IMP), Dirección de Tecnología de Producto, Mexico City, DF, Mexico (sergio.chavezp@gmail.com)

²Dirección de Servicios en Exploración y Producción, Instituto Mexicano del Petróleo (IMP), Mexico City, DF, Mexico

³Activo de Exploración Aguas Profundas, Pemex Exploración y Producción, Poza Rica, Mexico

Following Seismic Depth Imaging Technology for the Mexican Oil Industry: Experiences and Lessons Learned

Sergio Chávez-Pérez, Mario A. Centeno-Miranda, Douglas A. Gómez-Reyes, and Liliana Vargas-Meleza*

- > Introduction
- > Work scheme
- Academic research consortia
- > Technological workshops
- > Benefits for PEMEX
- Summary and future work
- > Acknowledgments

Some needs:

- Technological gatekeeping, training, and research
- Transition from time (PSTM) to depth (PSDM) domain concepts
- Computational reproducibility & open source tools
- > Human resources shortage

PEMEX – Technology follower IMP – R&D Center

Technological gatekeeping

Technical assistance in monitoring, adapting, and developing geophysical technology

Enhanced imaging workflow of seismic data from Chicontepec Basin, Mexico

The Leading Edge March 2008

SERGIO CHÁVEZ-PÉREZ and LILIANA VARGAS-MELEZA, Instituto Mexicano del Petróleo, Mexico City, Mexico

Strecker et al. (2003) show a recent example of cascading workflows to progressively mine seismic data for information. Thus, for multiple seismic attribute volumes, calculated from a 3D data set, data mining can lead to a seismic facies indicator that best discriminates lithology, fluid, and geometry, and finally produces a volume calibrated to rock properties.

This is the desired goal for most, if not all, interpreters. However, such data integration is not always feasible when well and seismic data do not cover the same region, when core and biostratigraphic data are scarce or unavailable, and when migrated volumes lack adequate resolution and have severe acquisition footprint problems.

In addition, turbidite reservoirs have lots of complexity, always greater than anticipated. PEMEX's renewed interest in turbidites has lead to high priority efforts to improve, with postprocessing workflows, seismic images to optimize field development.

In this article, we show the results of applying a twostep, cascading workflow to improve both vertical resolution and lateral delineation of turbidites in migrated seismic volumes acquired in Mexico's Chicontepec Basin.

Geologic overview. PEMEX Exploration and Production generously agreed to let us use the latest prestack time imaging result of 3D seismic data obtained in 1999, in the Chicontepec Basin (Veracruz, Mexico), a very important portion of the producing onshore sector (Figure 1).

Figure 1. Location map of a portion of Chicontepec Basin, Mexico, near Poza Rica, Veracruz. The red rectangle shows the approximate location of the Agua Fría-Coapechaca-Tajín data volume.

Fundamental interest in exploration seismology Improve Subsurface Imaging

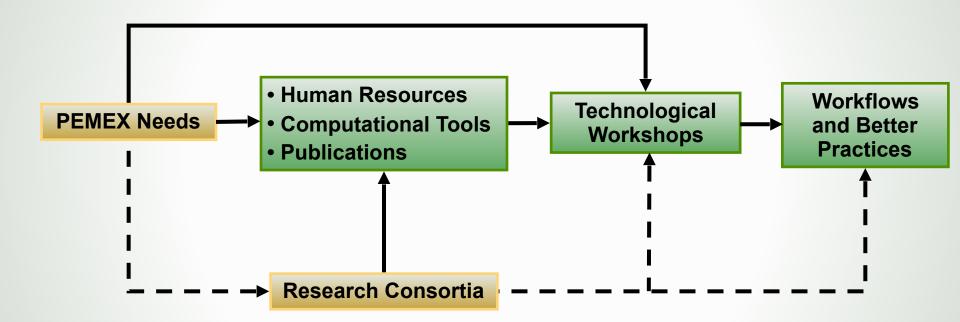
Resolution

- Vertical resolution enhancement
 From data acquisition to data interpretation
- Lateral resolution enhancement
 Seismic migration methods

Detection

- Seismic attributes
- Spectral decomposition

Our efforts have influenced PEMEX exploration practice


PEMEX practitioners:

- ✓ Do their job much better,
- ✓ Understand better what they do (or are going to do), and
- √ Generate better products for the production stage

- > Introduction
- > Work scheme
- > Academic research consortia
- > Technological workshops
- > Benefits for PEMEX
- > Summary and future work
- > Acknowledgments

Work Scheme

Technical assistance in monitoring, adapting, and developing geophysical technology

Benefits:

- Knowledge generation and transfer
- Technological gatekeeping
- Training and research

- > Introduction
- > Work scheme
- > Academic research consortia
- > Technological workshops
- > Benefits for PEMEX
- > Summary and future work
- > Acknowledgments

Academic Research Consortia

CSIM

Center for Seismic Imaging and Fluid Modeling

King Abdullah University of Science and Technology (KAUST)
Thuwal, Kingdom of Saudi Arabia

Seismic Modeling, RTM, FWI,
Anisotropy and Fluid Flow Modeling

Academic Research Consortia

AASPI

Attribute-Assisted Seismic Processing and Interpretation

University of Oklahoma, OK, USA

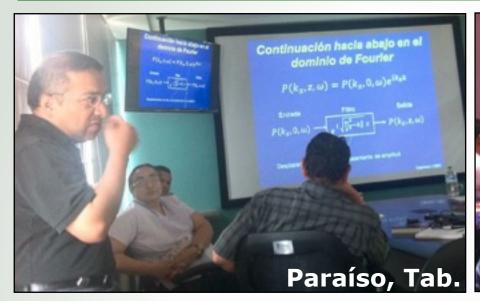
Geometric Attributes, Structurally Oriented Filtering and Acquisition Footprint Attenuation

Two PEMEX Master of Science Students

Academic Research Consortia

SEP

Stanford Exploration Project


Stanford University, CA, USA

Velocity Model Estimation, Seismic Modeling, RTM, FWI, and Anisotropy

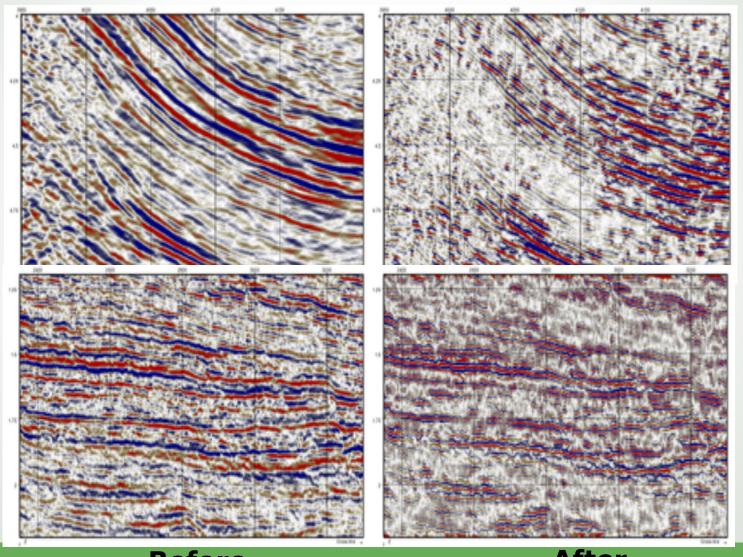
One Pemex PhD Candidate

- > Introduction
- > Work scheme
- > Academic research consortia
- > Technological workshops
- > Benefits for PEMEX
- Summary and future work
- > Acknowledgments

Technological Workshops

Relevant Topics

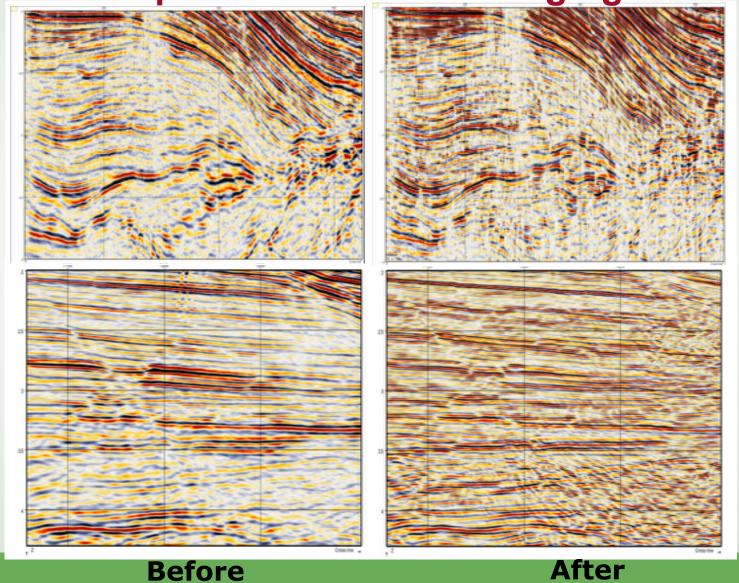
- Depth migration fundamentals: RTM, LSM, and FWI
- Quality Factor: Q-PSTM, Q-PSDM, Q-FWI
- Present and future of seismic imaging techniques,
 velocity and Q-seismic tomographies
- Seismic attributes: Use, abuse, and trends
- Velocity model estimation and seismic anisotropy
- Technological highlights from SEG and consortia meetings (AASPI, CSIM, and SEP)


Interaction with Practitioners

Main Topics

- Azimuthal seismic data processing
- Seismic anisotropy
- Rock physics
- Acquisition footprint and geometric attributes
- Spectral decomposition
- Seismic volume merging
- Frequency (resolution) enhancement

Frequency enhancement


Improve Subsurface Imaging

Before After

Frequency enhancement

Improve Subsurface Imaging

- > Introduction
- > Work scheme
- > Academic research consortia
- > Technological workshops
- Benefits for PEMEX
- > Summary and future work
- > Acknowledgments

Benefits for PEMEX

Seismic bandwidth extension

Acquisition

- Variable-depth streamer
- Over/Under towed streamer
- Dual-sensor towed streamer

• ...

Best

Processing

- Deconvolution
- Spectral balancing
 -

Imaging

- Migration deconvolution
- LSRTM
- ...

Post processing

- Derivatives
- Phase multiplier
- Loop deconvolution
- Spectral blueing
- Wavelet transform
- Reflectivity inversion
- SOF + Spectral balancing
- ...

Worst

Benefits for PEMEX

- Knowledge generation and transfer
- Technological gatekeeping
- Training and research
- Frequency (resolution) enhancement tests
- Use of free open-source software
 - e.g. Madagascar, Python
- Academic software and workflows from consortia

- > Introduction
- > Work scheme
- > Academic research consortia
- > Technological workshops
- > Benefits for PEMEX
- Summary and future work
- > Acknowledgments

Summary

Our efforts have influenced PEMEX exploration practice

PEMEX practitioners:

- ✓ Do their job much better,
- ✓ Understand better what they do (or are going to do), and
- √ Generate better products for the production stage

Lessons Learned

Two-step flow can be effective in transferring technological and scientific information

Source > Gatekeeper > Practitioner

- Technological gatekeeping contributes to overcome communication boundaries
- Need to improve delivering and receiving feedback / feedforward

Future Work

- Time (PSTM) vs Depth (PSDM) domain concepts
- > PSTM vs PSDM seismic attributes
- Time vs depth domain structural uncertainty
- Computational reproducibility, open source tools, and notebooks

Acknowledgments

- 2009-2015 Funding provided by PEMEX We are very grateful to Antonio Escalera, Marco Vázquez, and Otila Mayés
- Later & current funding provided by IMP We are very grateful to Alma A. Porres (CNH) and Jorge Mendoza