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Abstract

Silurian-age Niagaran “pinnacle reefs” of the Michigan Basin host an immense hydrocarbon resource, existing as closely spaced, highly
compartmentalized reservoirs that have produced >500 million barrels of oil and 2.9 trillion cubic feet of natural gas. Many of these fields are
approaching, or have already passed, economic viability of primary production, but the high degree of compartmentalization makes them a
potential target for CO, enhanced oil recovery, as well as natural gas storage. The primary objective of this study was to produce geologically
precise 3D static models of Niagara-Lower Salina Reef Complexes, which could be used as fundamental inputs for dynamic fluid-flow
modeling. A robust depositional model was first built for the Columbus 111 field, which has a high density of data with 32 cored wells at ~300m
well spacing over 3 km?. The new model resulted in the observation that Niagara-Lower Salina Reef complexes are highly asymmetrical with
predictable internal facies distributions that are strongly influenced by an east-northeast paleo-wind direction. Application of the new
asymmetrical reef model to reefs throughout the basin shows remarkable consistency with respect to the overall asymmetry and facies
distribution patterns. This new asymmetrical reef model was then used to identify lateral facies distributions where little core data exists, and
used in combination with observed diagenetic overprint to define reservoir flow units. Rock properties within the 3D static reservoir were
populated using porosity-permeability data obtained from conventional whole core analysis. For the Columbus I11 field, the validity of the
modeled HC volume estimates, which were calculated from porosity, fluid saturations, and fluid contacts, was confirmed by a near exact match
with pressure-derived estimates provided by the field’s operator. This study highlights the importance of using sequence stratigraphy and rock
typing to define reservoir flow units for static reservoir models.
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