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Abstract

Recent work on hydrothermal dolomite masses has emphasized their close relationship to structural deformation and faulting.
The source of dolomitizing fluids is considered to have been intimately and primarily related to the development of extensional,
or strike-slip, wrench-style faults. This paradigm has been recently challenged by workers who have documented many
occurrences of Paleozoic-hosted hydrothermal petroleum reservoir dolomites in North America that bear little, if any, overt
relationship to faults. The gas-bearing Manetoe Dolomite of northern Canada is another spectacular example of a hydrothermal
dolomite that does not exhibit a general spatial relationship to known faults. This laterally extensive HDT is encountered in
nearly 70 wells across more than 25,000 km? in the little deformed subsurface east of the Mackenzie Mountains, as well as in
outcrop across Liard Plateau and Mackenzie Mountains where it has been mapped as a discontinuous “formation” across six
1:250,000 scale geologic map areas, or over more than 20,000 km?. The Headless Shale aquiclude exerted a strong
hydrodynamic control on the upward circulation of dolomitizing brines in Late Devonian time east of the mountain front across
Slave Plain. The much greater depth to hydrodynamic basement west of the mountain front may have engendered more vigorous
circulation of dolomitizing brines, as indicated by fluid inclusion and isotopic data. This enhanced convective brine circulation,
in conjunction with local attenuation of the Headless Shale and the presence of carbonate shelf edge shoal grainstone facies, may
have caused the development of the very thick Manetoe Dolomite masses, such as in the Liard gas fields and in the “Manetoe”
shelf edge exposures at Ram River and Iverson Lake. Outcrop exposures of “HDT” zebra and boxwork fabrics in the Manetoe
are best interpreted as the consequence of hydrothermal dissolution by heated evaporitic brines of seawater origin, and not as
dilational breccia fabrics attendant upon extensional or wrench faulting.
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Hydrothermal dolomitization
paradigms and the Manetoe Dolomite:
are all HTDs fault-related?

Obvious
Dilational
Fracturing and
Brecciation?



What is this talk about?

Are all HDTs formed during active faulting?
Are HDTs formed only along faults?

Can fluid volumes moved during active
faulting be responsible for masses of
HDTs?

Can HDT fabrics be explained as
consequence of abrupt fluid pressure
changes during faulting?

Are there other explanations for HDTs and
their characteristic fabrics?



Rationale for “Explosive” HDT
after Davies & Smith, 2006
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THERMOBARIC DOLOMITE : EMPLACEMENT CONTROLS

Overpressured HDT [DEVONIAN SETTING] Sag Origin?

. . . SAG
Dilational Fabrics — (SEISMICALLY DEFINABLE)

[— . |
:XpIOSIVe Ceme OP SHALE SEAL / AQUITARD
= . ’T:ﬁ 7 oo > T -,\;’_ =
FACIES CONTROL S\ ]~

OF FLUID FLOW

FABRICS
& 4
11V
ERISODIC, HIGH-RATE

WRENCH HYDROTHERMAL
FLUID FLOW

1 up FAULZSoAI

luid Volumes? L EACHED LST

: - ("COOL EFFLUENT")
AQUIFER ‘ Flu IC! Orlg INS? . METHANE GAS
EVAPORITIC BASEMENT ‘™ PHASE CHANGE AT

| BRINE SOURCE? . 500 m DEPTH
GDGC 2001

SYPCDRO01_068

Graham Davies model for HTD in Devonian of Western Canada




Evidence cited for these assertions:

HTDs exhibit close association with, and are localized
along, extensional and transtensional faults and at their
Intersections. Possible temporal and spatial linkage of
MVTs and basinal SEDEX deposits and associated
faulting with inboard HDTSs.

Rock fabrics, such as rimmed microfractures, zebra
fabrics, and dolospar (saddle dolomite) cemented
breccias, are interpreted to be of structural origin related
to, and approximately contemporaneous with,
extensional, or transtensional faulting.

Occasional association of HTDs with replacement
sphalerite or other lead-zinc mineralization (galena).



Explosive dilational brecciation now
preferred explanation for HDT Fabrics
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HDT in Petroleum
Reservoirs w/
rimmed fractures,
zebra fabric and
“dilational” breccia
(Davies & Smith, 2006).

Are these really
structurally
generated through
abrupt changes in
pressure?

Presenter’s notes: A variety of textures interpreted by Davies and Smith as Dilational breccias, and fault fracturing-generated
textures, particularly the interesting Zebra Texture in the centre. Geopetal sediment in voids now cemented with Dolospar.
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Fluid movement
during faulting

Eichuble and Boles (2000) estimated fluid volume 12 X 10°
m3or 12 km? based on dolomite cement. The

corresponding radius of radial fluid drainage with intrinsic
permeability is 12 km over a 400 meter long fault exposure.




Modern seawater Intermediate seawater Devonian seawater
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Buoyant circulation of heated, dolomite-saturated, but
calcite undersaturated, subsurface brines can cause
limestone dissolution in the shallow subsurface. This can
give estimate of fluid volumes needed for HDT masses.
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Fluid volume (at 0.5 cm?3/L) for Albion HDT ~2,500 km3, or
60 km?3 per 400 m of fault length, 5 times the San Andreas
fault splay fluid volume. An in-situ total fluid source rock
volume (at 5% @) of ~50,000 km?3, precludes an in-situ fault
seismic-generated fluid source for Albion HDT.



Brine volume and rock volume to source
fluids required for Albion dolomitization

Brine volume (km3) for X axis is cm3 of HDT
dolomitization dolomite formed per

liter of brine

Rock volume (km?3) at 5% porosity to
supply brine
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Stoney Point, Scipio HDT have overlapping requirements!



Origin of Michigan Basin HTDs

Not surprisingly, Haeri-Ardakani (2012) and Luczaj (2006)
concluded that Devonian marine brines infiltrated deeper
parts of the Paleozoic section of Michigan Basin. Dense
descending brines warmed during Late Devonian-
Mississippian reactivation of the MCR which provided an
additional heat source for thermally-driven convection
cells that caused radial outward flow through faults and
fractures, forming HTDs along basement faults in the
basin.

They implicitly recognized that intrinsic fluid movements
relying on episodic seismicity are inadequate, as
Indicated here by estimates for volumes of in-situ fluids
required for the Albion HTD field alone.
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Outcrop and wells —
distal sections in Arnica
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Manetoe HDT extends basinward from Presqu’ile
Barrier through Landry Fm and up through Nahanni
at Liard Gas Fields
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HDT fabrics seen more completely in outcrop
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Zebra and Boxwork Fabric Genesis

Process for Creation Emplacement of
of Pore Space White Dolospar

Open fractures Cementation and replacement
(visible porosity) adjacent to fractures

Dissolution Cementation and replacement
(visible porosity) adjacent to macropores

Displacive vein growth | Displacive growth of dolospar
(no visible porosity) forms veins without Macropores

No bed expansion during dissolution and cementation

Dolomitized

Zebra Dolospar
Expansion of bedding by dilational fracturing

Bed Partin 1, Vertical dilation

Zebra Dolospar

Three Possible
Origins for
Zebra and
Boxworks

Dilational
Fracturing
during
Explosive
pressurization?



Bed thickness constant across zebras

Vuggy finely crystalline dolostone
and white dolospar

Bed partings
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Boxwork or
Chevron Zebra?
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Over-
cemented &
Imbricated
Zebra Chips?

Boxworks-
Linear and
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Ladder & Chevron fabric, rimmed Fracs?
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Rimmed fractures appear to
be edges of breccia
fragments? Unorganized
and not related to any
deformational stress field?!



“Floating” breccia HDT
replaces matrix fines?
Explosions not required!



Collapse,
rather than
dilation, a
clear choice
to explain

Manetoe
breccia fabric
of solution
gallery at
First Canyon!







Dolomite replacement adjacent to zebra
beds — flow focused through porous zebra




HDT leak into Strom mound flank beds




Mesoporosity and porous Zebr__aln HDT
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REACTIVE TRANSPORT
IN POROUS MEDIA
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Monterey fault dolospar highly CL
zoned, in contrast to unzoned
Manetoe/Presqu’ile CL apart from
final bright zone as seen above.

Pine Pt Dol




Table 1. Fluid inclusion analyses of dolospar in two thin sections from hand sample MTA-97-1.

T aq (°C) T. aq (°C) T aq (°CG) NaCl eq. wt%

Site 1 analyses of primary aqueous fluid inclusions in grey band

140 to 145 (4)* —27-0 to —33-0 —15-0 to —18-0 18-6 to 210"
145 to 150 (2) —39-0 to —45-0 —8-0 to —12-0 11-7 to 16-0
145 to 150 (2) —48-0 —18-0 210

169 (1) —31-0 to —33-0 —13-0 to —15-0 16-9 to 18-6
169 to 174 (2) —27-0 to —33-0 —15-0 to —18-0 18-6 to 21-0
170 (1) —50-0 to —57-0 —17-0 to —20-0 20-2 to 22-4
172 to 177 (4) —50-0 to —57-0 —17-0 to —20-0 20-2 to 22-4
172 to 177 (2) —31-0 to —33-0 —13-0 to —15-0 16-9 to 18-6
180 to 185 (3) —31-0 to —33-0 —13-0 to —15-0 16-9 to 18-6
189 to 193 (2) —50-0 to —57-0 —17-0 to —20-0 20-2 to 22-4

4
2
3
2

Site 2 analyses of primary aqueous fluid inclusions in white saddle dolomite
153 (1) —55-0 to —57-0 —25-0 to —27-0 25-8 to 27-2
165 to 170 (3) —52-0 to —57-0 —-19-0 to —25-0 21-7 to 25-8
173 to 175 (1) —55-0 to —57-0 —19-0 to —24-0 21-7 to 25-1
175 to 180 (3) —52-0 10 —57-0 —19-0 to —25-0 21-7 to 25-8
180 (1) —55-0 to —57-0 —19-0 to —24-0 21-7 to 25-1
180 (1) —55-0 to —57-0 —25-0 to —-27-0 25-8 to 27-2
187 (1) —55-0 to —57-0 —25-0 to —27-0 25-8 to 27-2
189 to 193 (1) —55-0 to —57-0 —19-0 to —24-0 21-7 to 25-1
195 to 200 (3) —55-0 to —57-0 —19-0 to —24-0 21-7 to 25-1
201 (1) —55-0 to —57-0 —25-0 to —27-0 25-8 to 27-2
201 to 205 (1) —52:0 to —57-0 —19-0 to —25-0 21-7 to 25-8

Saddle - Th of 183°C, Average salinity ~23 wt%
Grey - Th of 167°C, Average salinity ~18 wt%
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Presenter’s notes: Very few HDT saddle dolomites have any fluid inclusions with pressurized gas vacuoles indicative of boiling or
effervescence. Hydrocarbons virtually non-existent in most HDT dolomites.



HDT Fluid inclusions — 99.9% primary
marine brines with eq. vapor bubble

Only small or no hydrocarbons, usually only
trace amounts in Fls

Very few with pressurized vapour bubbles, so
CO, effervescence or boiling not factors

Almost all HDT Fls slightly to somewhat
modified evaporated marine brines with
requisite iodine, bromine and boron where
analysed (Ed Roedder (1968) first noted this)

Manetoe/Presqu’ile HDTs typical in these
respects




Manetoe Dolomite (Ram River)

1] white coarsely crystalline dolospar
BB Grey medium crystalline dolospar
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Pre-burial fracture networks common in Quaternary
Caribbean Ilmestones (Gwdry et aI., 2007 Turks and Calcos)




Progression of hydrothermal dolomitization at Ram River - Zebra Fabric

Planar to wavy thick bedded
skeletal lime packstone
with Wavy to Cross-bedded
Intrabed Partings

Partly dolomitized skeletal Dolomitized packstone.
packstone with macropores macropores largely filled
Along intrabed partings with white dolospar (Zebra fabric)

Macropores
micropores

Progression of hydrothermal dolomitization at Pine Point - Zebra and Boxwork Fabrics

Planar thick bedded pelletal lime  Partly dolomitized packstone with ~ Dolomitized packstone. White
packstone with cross-bedded macropores between intrabed dolospar partly to largely fills
intervals and faint fracture sets partings and thin fractures macropores (Boxwork with zebra




Ratner- 2000 km south of
PinePoint (Fu & Qing, 2011)

Manetoe and
Ratner - vugs In
dolomite only




British Columbia and
Northwest Territories F———— Alberta, Saskatchewan and Manitoba

Presqu’ile Barrier g—— E|k Point Basin
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1. Dense evaporated seawater brines in equilibrium with dolomite, but undersaturated
with calcite, sink to base of Phanerozoic strata and move northwestward downdip
along the top of impermeable Precambrian metasediments. A

sediments with minimal matrix porosity
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2. Brines ponded on top of Precambrian are heated and undergo accelerated thermal
convection during Late Devonian Antler Orogeny. These brines dissolve Nahanni, B
Sulphur Point, Slave Point and Ratner limestones. The resultant oversaturation of
dolomite causes precipitation of hydrothermal white dolospar to form the Manetoe

and Presqu'ile dolomites and dolospar in the Ratner limestone.
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Salton Sea geothermal system — partial
model for marine brine convectlon
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So what can be concluded?

. There are HDT masses which bear little relation to

past or present faults.

. The requirements for brine volumes to form fault-
related HDTs is unreasonably large for in-situ
formation fluid sources during fault episodes.

. HDT fabrics are not the product of explosive rock
dilation during faulting. Solution-excavation,
collapse and HDT replacement of fines explains
Zebra, Boxworks, and “floating” breccias in HDTs.
. Regional subsurface convection is the driver for
regionally developed HDT’s including along faults.
. Exploration could proceed between fault zones In
favourable facies or in areas remote from faults
using enhanced seismic techniques.
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Presenter’s notes: Prolific HDT reservoirs in the Wabamun platform limestone of Alberta, Canada are only weakly associated with
faults. Many are not. This implies that HDT fluids moved through the Wabamun horizontally between faults. This is most easily

explained as caused by thermal convection of HDT brines.




