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Abstract

The Wichita-Amarillo fault system defines the southern edge of the Anadarko basin and records Pennsylvanian inversion of a
Cambrian continental rift. The basement-involved fault system is comprised of multiple segments and the subject of vigorous
debate over the amounts of low angle thrust faulting vs. high angle left-lateral wrench faulting. This paper presents a crustal
scale cross section that integrates outcrop work on Ft. Sill, Wichita Wildlife Refuge, and Slick Hills with subsurface data to
consider the nature, deformation history, and seismic hazard of the Meers Fault. A recent 14,200ft well (Kimbell Ranch 32-1)
drilled in the Slick Hills two miles north of the Meers Fault crossed a repeated Arbuckle-Timbered Hills-Basement (Rhyolite-
Granite) section before drilling into granite wash beneath what is probably the Mountain View Fault. These thrusts are
expressed log-based cross sections near NW Fort Sill Field, 15mi SE. Outcrops on Ft. Sill 17 miles south of the Meers Fault
show minor folding and thrusting in the Timbered Hills and Arbuckle. These outcrops also indicate the same Timbered Hills-
Rhyolite nonconformity that crops out north of the Meers Fault, at approximately the same topographic elevation of both sides
of the Meers Fault. Thus, the Meers Fault did not have appreciable vertical movement during the Pennsylvanian. The data
indicate that the Meers Fault is cutoff by the Mountain View Fault, which leads to the intriguing question as to the causes of the
Meers Fault
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Modified from poster- Oct. 6 2016. Seismic Risk of the Meers Fault, SW Oklahoma: A Hoary Giant or Great Imposter?
e Andrew Cullen / Warwick Energy & University of Oklahoma

STATEMENT of the PROBLEM: The southern edge of the Anadarko basin in SW Oklahoma is defined by a regional fault system that records
Pennsylvanian-aged inversion of a failed Cambrian intra-continental rift; an aulacogen formed during the break-up of Rodinia (Hoffman, 1974;
Wickham, 1978; Keller & Baldridge, 2002). This thick-skinned, basement-involved system is the subject of a long and on-going debate over the
relative partitioning of low-angle shortening vs. high-angle strike slip faulting (see Gay, 2014). The Meers fault, originally mapped as the
Thomas fault (Harlton, 1951) was renamed for the town of Meers (Miser, 1954); it is regarded as one the region’s prominent tectonic elements
(Harlton, 1964; Hamm et al., 1964). A prominent fault scarp exposed at the surface on the south side of the Slick Hills can be traced for over
24km (Figures 2 and 3). It is the only Holocene fault scarp in the Midcontinent. The fault’s last movement as an oblique reverse fault displaced
Quaternary alluvium (Gilbert 1983; Crone & Luza, 1986), possibly producing an earthquake between Mw 6.8 to 7.1 (Ramelli & Slemmons, 1986;
Luza et al., 1987; Baker & Austin, 2015). Cetin (2003) suggests that the rupture extended an additional 16km to the NW suggestive of an even
larger earthquake. The Meers fault strikes N60°W and is optimally orientated within the modern regional stress field for reactivation (Darold &
Holland, 2015). Thus, the Meers fault is of great interest from both a regional geotectonic perspective and as a modern seismic hazard There are
conflicting interpretations of the nature of the Meers fault. All studies of the fault -trenching (Crone & Luza, 1986), shallow seismic (Miller et al.,
1982), magnetic profiles (Cecil-Jones, 1990) and coring (Collins, 1992)- indicate the fault is a reverse fault that dips steeply north into the
Anadarko basin. As it is unlikely the fault turns back over itself, its northerly dip is at odds with interpretations treating the fault as a major SW
dipping thrust / reverse fault that placed the Wichita Mountains over the Slick Hills block (Brewer et al. 1982; McConnell, 1989; Soreghan et al.,
2012). The Slick Hills block, which is bounded on the north by the Mountain View fault system, is an intermediate fault block between the
Wichita Mountains and the deep Anadarko Basin The following slides and text attempt to resolve the question of the nature of the faults that
bound the Slick Hills block (Figure 2) and whether or not the Meers fault is a significant tectonic basement fault.

SUMMARY: A true scale crustal cross section (Fig.13) is presented that integrates outcrop work on Ft. Sill & the Slick Hills with bore hole,
gravity, and seismic data. A key constraint is the Kimbell Ranch 32-1 (TD 15,280) that drilled through the Slick Hills block 2mi north of the
Meers fault. The KR32-1 crossed a repeated Arbuckle-Timbered Hills-basement section beneath the NE dipping Meers Fault and then cut a much
deeper second thrust before terminating in granite wash in the footwall of the Mountain View fault (Figures 4 and 5). The Mountain View fault,
the major basin-bounding fault, dips 20-30° SW beneath the Slick Hills and Wichita Mountains. It cuts off the Meers fault. Regional subsurface
mapping, seismic data, and outcrop observations indicate that the Wichita Mountains have been thrust over the Slick Hills by a fault named here
as the Wichita Mountains fault (Figure 5-9) .  Outcrops on Ft. Sill document minor folding & low angle thrusting in the Timbered Hills &
Arbuckle section that overlie the same Cambrian nonconformity that occurs in the Slick Hills (Figures 10 and11). Considering that current levels
of erosion exhume a Permian landscape, the fact that the same Cambrian nonconformity crops out at similar topographic elevations of both sides
of the Meers fault strongly suggests that the fault does not have significant throw (<10,000ft). The Meers fault is interpreted here as a back thrust
of similar the Blue Creek Canyon fault. If the Meers fault does not extend into the basement, then we are led to the intriguing question as to the
cause of its Holocene rupture and possibly examining whether assumptions its estimating paleo-magnitude are correct - delicately balanced
granite boulders in the Wichita Mountains appear inconsistent with the estimates of Mw 6-7 for its last rupture ca. 1000 years ago. Rather than a
major tectonic feature the Meers fault may be a relatively small back thrust (inverted Cambrian rift fault?) confined to the Slick Hills block rather
than a hoary giant; the ultimate seismic hazard lurking elsewhere in the basement. Certainly, more work & further study is warranted.



Figure 1 Regional Features
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Figure 2 Local Geological features near SE end of the Meers fault ¢ Carlton Rhyolite
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Figure 3 Meers fault prior fault studies documenting NE dip 60° to 85°.

Comment: Linear fault scarp suggest high dip at surface.
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Figure 2. Northern part of reduced-to-north pole total-field acromagnetic map, after Jones-Cecil (1995) (1954 site inclination of 64° and
declination of 10°). BCCf, Blue Creek Canyon fault. Wide solid and dashed black lines indicate locations of selected major faults from
geologic information from Harlton (1951, 1963, 1972), Ham et al. (1964), McConnell (1983), Ramelli and Slemmons (1986), and Ramelli
et al. (1987) (on Meers fault this corresponds to late Quaternary scarp). Solid and dashed red lines indicate alignments of horizontal
gradient maxima and/or inferred faults from aeromagnetic data. Narrow black lines and letters identify g d. ic profile
crossing the Meers fault. Not shown, profile L is 3.8 km southeast of K and extends 2.5 km northeast of the Meers fault and 1.3 km
southwest. Orange triangle shows location of Oklahoma Geological Survey drill holes.
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Figure 4 Kimbell Ranch well — Mt. View, Meers, and Wichita Mt. faults on key seismic lines.
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Figure 5 Structural Interpretation of core data along the Meers fault reported by (Collins1992). These data indicate that

the Meers fault has locally cut off the Wichita Mountains thrust.
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Figure 6 Seismic lines across Mt. View and Wichita Mt. (from Keller 2014), but re-displayed below at true scale
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Komalty Field — footwall of low angle basement involved NE vergent

Figure 7 Mt. View fault to west of Slick Hills area of interest; two low angle thrusts
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Figure 8 Mt. View thrust along the Slick Hills was identified, but not named by Hamm (1964); imaged with 3D seismic data.

0.2 SW Stanolind Perdasofpy #1 / NE
Sec. 11 T4N R12W
0.4 == I \
: T T 1 ~ ( \
% w6e | soooft Reogan Ssoo:
5
o
@« o8 |
E g el
Pl | | g f
o ——
g q ——
'ﬁ 2 ?_°|
@ l
T e
r > 2
- 1.6 | 15000ft + ——
E o T S == e
- H ——
s ‘€~ ~  SPrings,
E_"l.lf'xﬂ _i()” A = O e L o= =
= — T &Y
o 15_ e B e ‘Fa“\t ’:: < ':—_-"",‘-' N
— 20 — ieWN-T 20000 = = - —
I ‘e e g e e
o —— 22,000ft ——» N“-' N e e
t 2.2 ~20 NNNFE —~ «z. — __,,
ar T - : —
} ":‘ = — -FN
4 -~ Reflection grode Pt == ARp ~
' —— g0 —25000-. JCK £
——  lair to poor ~ - i
26 == --~- questionoble =% Ay
2.0 Horizental scale = S T — - - —— j‘ e
F T 1 T ¥ T ' = -
0 4,000 8,000 12,000 (feeldogose 24000 - ’_zl === Arbuckle Group ==
. . : “ | ] Reagan Sandstone =——
Ham (1964) Seismic interpretation at Stanolind #1 “the = | X combrian nonconformityl

discontinuity of dip at the stratiform basement rocks at A-A
precludes the possibility of multiple reflection and demonstrates a
basement rock thickness of at least 20,000ft.”

Carlton Rhyolite
Wichita Granite
E= Navajo Basalt




Figure 9 Mt. View thrust fault with well control.
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Figure 10 COCORP lines showing Meers and Mt. View thrust faults (after Brewer et al., 1982)
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Figure 11 Upper plate geology & deformation at McKenzie Hill and Kerr Hill on Fort Sill.
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The Timbered Hills-Carlton rhyolite nonconformity although not exposed in outcrop is
inferred to be present. This nonconformity also crops out in the Slick Hill north of the
Meers fault, 10 miles away(Figure 2). These relationships strongly suggest that the
Meers fault did not have significant (>10,000ft) vertical displacement during the
Pennsylvanian and is consistent with the interpretation that the Meers fault is a modest
back thrust in the Slick Hills block similar to the Blue Creek Canyon fault (BCCF).




Figure 12 Upper plate low angle thrust at McKenzie Hill, Fort Sill; lower most section an “anticlinorium” that plunges SE into

the Marietta Basin
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Figure 13 True-scale crustal cross section from Wichita Mountains to the Anadarko Basin (full section lower right).
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Parting comments & several of many unresolved questions

A) The Cambrian rift (aulacogen) was uplifted and exhumed during Pennsylvanian orogenesis, BUT is it truly
inverted in the strict sense that the original master crustal detachments became thrust faults during
Pennsylvanian orogenesis?

B) What was the width of the Cambrian rift, 60km or 120km? Note that Hansen et al. (2013) interpret a
large volume of volcanic & syn-rift clastic fill east of the Wichita & Mountain View faults. This suggests
strongly asymmetric rifting (simple shear) with implications regarding rheology, crustal coupling, strain rate,
and cumulative extension (see Huismans & Beaumont 2014).

C) Restoration of the cross-section presented here results in a tabular, lopolithic, geometry for the mafic &
ultramafic Cambrian igneous rocks. It is interesting to consider that subsequent thrusting led to thickening
this dense root and may be a controlling factor in the anomalous Permian subsidence patterns rather than
buoyant isostatic uplift typically observed structurally thickened continental crust (Soreghan et al. 2012).

60km vs 120 km width Hansen et al. (2013) indicate a
B M very asymmetric relationship
between rift fill and mafic root.

Wichita Uplift Anadarko Basin

c Sedimentary cover not fully restored - getting close.

Need additional displacement on WMF § EPIPG" Lower Post

4. 3 N 4
D
‘E_-'

5.85 (2.6)
|Proterozoic Basin?'

// Volcanics
Cariton Rhyolite?,

Mafic Igneous /” ( yoltte?)

6.2 (2.7) Complex

Rift Fill?

6.2 (2.7)

6.2 (2.7)

I
150 200
Har al 1 1ithes 174 120130 DISTANCE (km)
Rhyolites beyond mafic root.

* Thick rift fill NE of maficigneous root




Three Suggestions for Additional Study

Figure 2 Local Geological Features SE end of Meers fault

The minimum rupture length (¥31km) along the Meers fault is well R
established, but the maximum length may be as long as 58km (Baker & e WY
Holland, 2015). Measurements of displacement (2-3m)are constrained by a
what amount to a single transect where the fault has been gouged, shot,
shocked and cored. Therefore, estimates of paleo-magnitude based on
these two parameters are not well constrained (see Baisi & Weldon 2006).
Additional study is needed, e.g., shallow seismic data (ground penetrating
radar) to constrain the amount Holocene motion on the Meers fault.

The outcrops of the Timbered Hills-Arbuckle Groups on Fort Sill
have been largely neglected since Decker (1939). These outcrops
represent key stratigraphic and structural information in the
upper plate that can be compared with studies in the Slick Hills,
north of the Meers Fault. For example, use trilobite zonations in z i\ R

the two blocks to estimate and compare Cambro-Ordovician ESE i i VL ST
subsidence rates in order to build better rifting models for the Lt AT
Southern Oklahoma Aulacogen

TNA Reagan-HC Creek thrust
ovel

South Boundary,

Balanced granite tors, Elk Mountain seem inconsistent with a
major earthquake on the Meers fault within the last 10,000
years. Cosmogenic isotope studies could determine if these
are the remaining remnants of once more widespread
balanced rocks.
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