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Abstract

Mississippian carbonate and silica-rich deposits of the mid-continent formed on a regionally extensive carbonate ramp and form shoaling-
upward lithofacies successions that stack into high-frequency cycles. The cycles form several prograding depositional packages that downlap to
the south. Lithologies include tripolitic chert and limestones that vary from mud- to grain-dominated fabrics. Tripolitic chert, the primary
reservoir, most likely formed during periods of exposure; however, hydrothermal processes are also a possible cause. While the chert is most
common at the top of the Mississippian, other cycles are capped by high-porosity, low resistivity chert. Lithofacies from core are calibrated to
well logs using various methods and tied to seismic attributes to predict and map their spatial distribution. Support Vector Machines (SVM), a
supervised-learning method in data mining, learns and recognizes the patterns that exist between the core and log datasets. SVM analyzes
lithofacies (from core) and logging response and produces a model for lithofacies that is used to predict lithofacies in non-cored wells. The
lithofacies logs are used to establish the stratigraphic framework and are integrated with seismic data (attributes) to condition 3-D reservoir
models of lithofacies and petrophysical properties. The models are important to show depositional, diagenetic, and structural trends, analyze
reservoir connectivity, and relate production to these characteristics.
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Research Questions @

1. What are the stratigraphic and structural controls
on reservoir quality and productivity?

2. What are the dominant lithologies / lithofacies and
their well-log signatures?

3. How do the lithologies / lithofacies and petrophysical
properties vary spatially?
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Study Areas — Data Sets

KANSAS
w1 2N W e |
GRANT
OKLAHOMA
KAY
Grant Co. o
&
£ " &
g
£ femew A 27N3W|
Z(' . ¥ Welllog data &
ol s
Township lines
m 3-0) Model Area
NBW osnEwW 25N3W/
GARFIELD NOBLE =
H E=————]
Birch (2015)

devon

3 cores (> 1600 ft)

Digital log data for 14 wells
Numerous wells with raster data
>150 core plugs (10 ft-increment)
Thin sections
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Early Mississippian Paleogeography @

Adapted from Blakey (2014) and Gutschick and Sandberg (1983)



Mississippian Stratigraphy
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Mississippian Lithologies / Lithofacies
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Mississippian Stratigraphic
and Structural Framework
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Mississippian Lithology Estimation —
Well-log cut-offs @
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Mississippian Lithology Estimation —

Artificial Neural Network
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Mississippian Lithology
Vertical Proportion Curves
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Tonkawa Field Area: Mississippian
Stratigraphic and Structural Framework
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Tonkawa Field Area: Mississippian @
Stratigraphic and Structural Framework
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Tonkawa Field Area: Mississippian

Stratigraphic and Structural Framework @
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How does tripolitic chert vary between wells? @
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from seismic€ inve
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P-impedance to estimate @
Mississippian lithology

5 —T—— Dowdell, White, and
2" e B Dense Chert Marfurt (2013) used P-
. w [ creticnLimestone | [Mpedance to estimate
’ L~ oo the occurrence of

0.24

tripolitic chert

B Shaly Limestone

0.2

0.16

PhiT (Decimal)

012

Zp < 34,000, P(tripolite) = 0.9
Zp > 46,000, P(tripolite) =0

0.08

0.04

e ke | i Valid for trend mapping

0

24000 28000 32000 36000 40000 44000 48000 52000
P Impedance (ft/s)(g/cc) Lindzey (2015)



P-impedance to estimate @
Mississippian lithology
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Mississippian 3-D Lithology Model @
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Lithology Isopach Maps @
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Thickness Anomalies — Karst Features?
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Stratigraphic Controls on
Petrophysical Properties
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Stratigraphic Controls on
Petrophysical Properties
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Stratigraphic Controls on
Petrophysical Properties
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e Tripolitic chert is abundant in the regressive phase
of the Mississippian 3" order sequence

e Sponge spicules are not abundant Birch (2015)




Controls on Production @

In general, areas of thin
tripolitic chert reach peak
oil production early, but
decline rapidly because of
limited reservoir volume

Areas with thicker
tripolitic chert can take
longer to reach peak oil
production but produce at
higher rates for longer
periods and have higher
long-term cumulative
production; however, this
production is variable...




Woods County
Seismic-Constrained Reservoir Modeling
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Production from Vertical Wells

Tripolite Thickness is Important! @
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Production from Horizontal Wells @
Fractured Limestone is Important too!
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Future Directions...
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Conclusions @

e Reservoir lithologies are tripolitic chert and chert-rich limestone

 Higher reservoir quality is most commonly associated with the
regressive phase of the third-order Mississippian sequence

« The degree and areas of diagenetic alteration and the sequence-
stratigraphic framework provide the main controls on reservoir
guality

 Production from tripolitic chert is sensitive to thickness,
porosity, and water saturation

 Production from chert-rich limestone is most likely fracture
controlled

e Oil production and total fluid production are not necessarily
related, and the differences between the two should be further
explored



