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Abstract

The driving forces for conventional accumulations (structural or stratigraphic traps) are Forces of Buoyancy which are due to differences in
densities of hydrocarbons and water. In contrast, the driving forces for unconventional tight accumulations are Forces of Expulsion which are
produced by high pressures. That is an enormous difference and creates unconventional petroleum systems that are characterized by very
different and distinctive characteristics. The Force of Expulsion pressures are created by the significant increase in volume when any of the
three main kerogen types are converted to hydrocarbons. At those conversion times in the burial history, the rocks are already sufficiently tight
so the large volumes of generated hydrocarbons cannot efficiently escape through the existing tight pore system, thus creating a permeability
bottleneck that produces an overpressured compartment over a large area corresponding to the proper thermal oil and gas maturities for that
basin. The forces initially created in these source rocks can only go limited distances into adjacent tight reservoirs (clastics or carbonates)
above or below the source. The exact distance will vary depending on the pressure increase, matrix permeability, and fractures of that specific
tight reservoir system. In general, the distances are small, in the orders of 10s to 100s of feet for oil and larger for more mobile gas systems.
Those exact distance numbers are subject to ongoing investigations.

A plot of the pressure data versus elevation for a given formation is critical in determining whether an accumulation is conventional or
unconventional. Conventional accumulations will have hydrocarbon columns of 10s to 100s of feet with the pressure in the hydrocarbons and
that in the water equal at the bottom of the accumulation (at the HC-water contact). In contrast, the unconventional accumulations will show
HC column heights of 1000s of feet with the pressure in the hydrocarbon phase and the water phase being the same at the top of the
accumulation (at the updip transition zone). Those significant differences are critical for understanding and differentiating these two play types.
Because the system is a pore throat bottleneck with very little or minimum lateral migration, the type of hydrocarbons are closely tied to the
thermal maturity required to generate those hydrocarbons. Thus the play concept begins with two important geochemical considerations: (1)
where are the source rocks and what are the kerogen types and organic richness (TOC), and (2) where are they mature in the basin for oil,
condensate, and gas in the basin. These parameters will very quickly define the fairway for the play. Then one has to add the critical
information on the reservoirs themselves: composition (brittleness), thickness, and reservoir quality (matrix porosity and permeability). In



summary, these tight unconventional petroleum systems (1) are dynamic, and (2) create a regionally inverted petroleum system with water over
oil over condensate over gas for source rocks with Type | or Il kerogen types.
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Outline

e Continuous (unconventional) versus discrete (conventional) traps
* Oil expulsion and accumulation

* Forces of expulsion versus buoyancy

 Abnormal pressure systems

* Microfractures

* Pressure compartments through time

* Residual oil and water saturations

* Inverted petroleum systems

* Check list for finding continuous accumulations

* Summary
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Tight Shale

Very low matrix K
Analogous to shale gas
Source = reservoir

Examples: Eagle Ford

Unconventional
Light Oil

Hybrid Shale

Systems
Low matrix k
Analogous to tight gas
Source # reservoir
Clastics or Carbonates

Ex: Bakken, Niobrara




CBM

Sorbed gas
Thermogenic or biogenic
Source = reservoir

Shale Gas

Largely sorbed gas
Very low matrix K
Fractures (?)

Source = reservoir Example: Fruitland

Unconventional Coals, Cameo, Ferron, Ft.
Examples: Barnett, ey

Marcellus Gas




Oil Expulsion and Accumulation (Price, 2000)

* Deep parts of sedimentary basins are closed-fluid systems, where
fluid movement is difficult

* Oil expulsion from source rock systems is inefficient

* Unless source rocks are physically disrupted by intense structural
activity, faulting or good fluid conduits (sandstones), oil expulsion
does not occur

* Most oil remains in or adjacent to its source rock



Kerogen to Bitumen to Hydrocarbons

Step 1. Conversion of kerogen to bitumen Volume and Water

Reduction of kerogen volume Pore Walter

. Residual
Creation of kerogen nanopores (Residual)

Expansion of bitumen into pore spaces

Increase in pressure

) Pore Water
Bitumen absorbs water (Residual)

Step 2. Conversion of bitumen to oil Dissolved Water |

Significant increase in volume

Significant increase in pressure Pore Water
Bitumen
Drives remaining water out of system

Kerogen Bitumen

Duhailan, 2014

Exceeds rock tensile strength




This large volume change in tight
rock creates
FORCES OF EXPULSION

(Pressure Driven)

Very different from the FORCES OF BOUYANCY (Density Driven)
we used to for Conventional Systems



Impact of Organic Richness on Development of a
Continuous Oil-Saturated Network
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MICROFRACTURES

initial after hydrocarbon generation

e B

-—-4 pores completely saturated with water P organic matter

[ ] pores invaded by hydrocarbons S fracture

f direction of
HC movement

Tissot & Welte, 1984 after Ungerer et al., 1983



Forces of Expulsion Does Four Important Things

e Initially creates an over-pressured compartment
 Drives remaining water out of system (dehydrates the system)

* Forces oil and condensate into very tight pore space resulting in low
water saturations

* Creates extensional fractures
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Microfractures Access Adjacent Porosity

Niobrara Examples Mowry Shale Examples

200X PPL

Zone of
blue-green
discoloration
above and below
horizontal
microfracture
aperture

300 pm zone of
submicroporosity,
above and below
the microfracture
aperture: HMF

D 200X EPI

1750pm

Figures modified from Warner, 2011 Figures modified from Duhailan, 2014
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Gill #2 Niobrara Formation
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Pellets and microfractures
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Microfracture Summary

* Very common in organic-rich source rocks

 Dilate when we frack the well with high pressures

e Resulting in really good IPs

e But collapse (?) when pressure is drawn down

* Resulting in 50-80% first year declines

* Challenge: how to keep them open for years not months
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The systems are dynamic and not
static as in Conventional Traps

* The hydrocarbons are trying to escape

e But there is a bottleneck due to the very low matrix permeability, so
the process is very slow resulting in overpressuring of the system

* The produces an exploration target where:
* The lateral extent crosses stratigraphy and relates to maturity in the basin
* The top and bottom will relate to the source rock package itself
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Typical Pressure Plots

« UNCONVENTIONAL ACCUMUL

100s to 1000s of feet
Pw = Phc at TOP accumulation

(see lower circle)

« CONVENTIONAL ACCUMUL
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(see upper circle)
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Pressure - Depth Trend
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Bakken Petroleum System

_ : a9 "MATURITY"
Source Rock \ — ' /
(Upper and Lower Shales) : ‘ ~ ’

Bakken 400

Three Forks Overpressure
Reservoirs: Source Beds:
Middle Bakken & Three Forks Upper & Lower Bakken Shales

“what was made in the Bakken, stayed in the Bakken PS”



Burbank BIA #23-8
NESW sec. 8 T147N R93W

CVF=closed vertical fracture
F= undesignated fracture
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saturations circles

Residual oil
saturations triangles
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Fluid Saturations Three Forks
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Look At Some Typical Sws

Most of the units are at irreducible water saturation which for these tfght
rocks requires those enormous forces of explusion pressures.

Some typical Sw values:

- Wasatch at Altamont: < 10%
-  Cardium at Pembina: < 20%
- Austin Chalk in Texas: < 20%

- Spraberry in W. Texas: 20 - 30 %



The Inverted Fluid System

The Inverted Fluid System Austin Chalk:
Eastern Giddings Field

A Classic Inverted System
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Eagle Ford Shale Play,
Western Gulf Basin,
== South Texas
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The Unconventional Check List

Continuous type of accumulation

Areally or vertically pervasive

Hydrocarbon saturated (O or G)

Abnormally pressured

Lack of down-dip water

Low ¢ and k

Lack of obvious seal or trap

Oil or gas generation window; large “kitchen”
Updip transition to wet

Enhanced sweet spots

Large OOIP or OGIP

TOC> 2.5 wt.%

Net thickness of source bed > 50 ft

Type | or Il kerogen

Lack of intense structural activity; lack of “thief” zones



sSummary

e Unconventional tight oil resource plays are ‘changing the game’
e It all starts with good to excellent source beds

e Source beds mature over large areal extent

* Natural fracturing enhances tight reservoirs

* Horizontal drilling and fracture stimulation technology important in
tight oil plays
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