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Abstract

Sub-seismic scale heterogeneity in channelized deep water reservoirs can lead to significant uncertainty in reservoir connectivity and predicted
performance. Though bed-scale heterogeneity can influence reservoir performance, reservoir simulation typically requires cell sizes much
greater than the scale of internal channel architecture. Simple fine-scale sector modeling studies can be used to investigate the influence of bed-
scale architecture and channel stacking on flow and connectivity and to identify optimal gridding and effective property modeling for field-
scale volumetrics and flow simulation.

Fine-scale simulations were performed using sector models developed from an outcrop analogue in the Tres Pasos Formation of the Magallanes
Basin in Chilean Patagonia. These models represent a 550 m long segment of a single channel element, then two stacked channel elements. The
influence of intra-channel architecture within a channel element was investigated using three different channel fills, each with an increasing
level of detail: (1) single homogenous fill populated with average reservoir properties, (2) three depositional facies (axis, off-axis and margin)
characterized by vertical boundaries and distinct average reservoir properties, and (3) distributed reservoir properties populated according to
observed facies proportions, architecture, and trends. Reservoir performance testing was performed using a single injector-producer pair at a
constant well spacing. The impact of well placement on reservoir performance was tested by systematically moving each well through a range
of locations from the axis to margin of each channel. The influence of inter-channel architecture was investigated using stacked channel
segments. The experiment above was repeated on the stacked segments by varying both internal channel fill and well placement. Variations in
channel stacking were tested by changing the offset angle and distance between the two channel segments. End members of the stacked channel
simulations were selected to identify an optimal cell size and effective properties for building coarse grid models. Primary conclusions include:
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(1) reduced detail in the representation of intra-channel architecture, including upscaling, tends to under-emphasize the critical role marginal
facies play in inter-channel connectivity, and (2) error introduced by flow-averaged properties decreases as stacked channels become more
vertically aligned.
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Objectives: Tres Pasos Formation, lower Laguna Figueroa section
®

1) Quantify the influence of inter- and intra-channel architecture on reservoir
performance using high-resolution outcrop-based geocellular modeling.

2) Investigate how the character of internal channel fill and channel stacking may
impede connectivity by creating reservoir compartmentalization.

B
3) Quantify the impact of asymmetric channel fill on reservoir connectivity and L e — e . T
performance. |- T Si—
| | | o | . _ : . | | | | E | o /
4) Elucidate the impact of upscaling inter- and intra-channel architecture on flow. il ,‘ = : e i ey

.
-
-
-
-
-
-
-
-----

_____________
_____
______

Geologic Background and Study Area

The Late Cretaceous Tres Pasos Formation consists of a turbidite-dominated succession that records
the terminal phase of deep-water deposition in the Magallanes foreland basin, southern Chile. Slope
channel deposits accumulated along a high-relief margin (>1 km relief) along a depositional profile
>40 km long (Hubbard et al., 2010). This study focuses on a 120 m thick and 2.5 km long sand-
stone-rich succession of slope channel strata located adjacent to Laguna Figueroa. 3D exposures
along a depositional-dip oriented transect enables well-constrained mapping of channel architecture.

Paleoflow roughly due south
(highly oblique to outcrop orientation)

Legend: channel sandstone interbedded sandstone and mudstone [l mass transport deposit - complex boundary —— element boundary 250 m

The Laguna Figueroa Outcrop Belt. Two-large-scale (>100m thick), composite channel complex sets have
been delineated in the Laguna Figueroa area, which are comparable to channelized slope systems ex-
GoogleEarth images of the Ultima Esperanza District with CSS JIP study areas highlighted. Inset pIOred off numerous continental marginS. The lower of the two is the focus of this anaIySiS (MacaUIQy and

map at lower left shows location of study area with respect to southern South America (compare

locations of the Torres del Paine and Puerto Natales). Period |Fm. | Depositional Architecture H U bba rd, 201 3)
Chile-Argentin . T T T e e S PhOtO (tOp) and
Int’l bgrder i €  El Chingue Bluft Terti o W <« > E . .
= 5 10m line-drawing trace
T (below) of a
ol ~ ~— channel, the
© . T
< - Villa Cerro Castillo DV" — prlmary bU||d|ng
o |5 block for
- e — . .
Cordillera 8 o mOdeI | ng. NOte
del Paine .
_ ¢ - Alvarez Ridge = | . the more axial
| - Arroyo Picana vy S Om amalgamated
v ¢ - PPC B = | |
< - Laguna Figueroa é ctb Om 140 m Sandstone (at
v
o O . ey
. et T e S —_— right) transitions to
. non-amalgamated
A \ Lol = and finer facies to
° Stratigraphy of the Magallanes Basin = 0 _ .
\ (Romansetal, 2011). This study focuses on the § % — —— the Ieft ThIS
b i i al . o e
f) Lower portion of the Tres Pasos Formation. Py aa) w= r el athn S h | p is
/ Jurassic-U. Cretaceous Backarc Basin Deposits further depicted N
/ the conceptual
{ cross-section
, . below (bottom).
R Yy & Conceptual Cross-Section edimentation unit
/ — = —ee—
e 1/ A e —
{2" vertical exaggeration = 2X ///— eroded channelform
- ;f", ¥ /4 Interpreted paleogeographic setting for the ‘ > 25m bypass drape deposit
7 Tres Pasos Formation slope system, and | | | |
¢ overlying and genetically linked shelf-edge MARGIN | OFF-AXIS | AXIS | OFF-AXIS | MARGIN

delta system of the Dorotea Formation (Romans

etal, 2011). Macauley and Hubbard, 2013




THE The Influence of Intra- and Inter-Channel Architecture in Selecting Optimal Gridding for Field-Scale CHILE Universiy of Calgary

UNIVERSITY

S L O P E VirginiaTech

OF UIAH" Reservoir Simulation, Tres Pasos Formation, Magallanes Basin, Chile SYSTEMS Coloredo State Universiy

Casey Meirovitz', Lisa Stright?, Brian W. Romans3, and Stephen M. Hubbard*

'Geology and Geophysics, University of Utah, “Colorado State University, *Geosciences, Virginia Tech, *Geoscience, University of Calgary

Modeling Approach

1) Develop static and dynamic models (channel element to channel complex set scale) based
on outcrop characterization, expanding beyond the high net symmetric channels of
Laguna Figueroa to include asymmetric channel fill and lower net variations.

2) “Bottom-up” methodology where high-resolution (2 m x 2 m x 0.25 m cell size) single and
double channel sector models are used to isolate behaviors, quantify uncertainty/error,
and identify optimal grid sizes for larger-scale simulations.

3) Assume constant rock properties for each facies, and hold rock and fluid properties
constant for all simulations.

4) Test impacts to reservoir performance from: a) internal channel architecture, b) facies
proportions (net-to-gross), and c¢) channel stacking angle and offset (mobility).

Variations in Internal Channel Architecture
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Axis Thick-bedded amalgamated sandstone (Ta and Tb) 1000 200 0.3 0.9
Bl Off-Axis | Thin-to thick-bedded sandstones, less amalgamation, grade rapidly to siltstone (Ts, T, and Ta) 100 10 0.2 0.7
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Four deterministic end-members capture a range of potential variations in depofacies proportions and in-
ternal architecture at the channel element scale. The “High NTG/Symmetric” case is characteristic of fill pat-
terns and proportions (68% axis, 24% off-axis, 8% margin) observed at the Lower Laguna Figueroa outcrop.
Equal facies proportions in the “Low NTG” cases represent a lowest end-member condition. Asymmetric
cases contain the same facies proportions as their symmetric counterparts and are used to quantitatively
assess the influence of asymmetric channel fill on reservoir performance.
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Inter-Channel Architecture: Stacking Angle and Offset Sensitivity Analysis: Volumetrics and Recovery Factor

Channel stacking results from the interplay between A Whisker-plot showing the range and average
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In all cases simulated, more than 40% of oil remains after “watering out.” Consideration of channel-element
scale heterogeneity will play an important role in improving risk assesment and field development strategies.
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Upscaling: Optimal Grid Selection Drones, Photogrammetry, and 3D Outcrop Models

s
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The Chile Slope Systems Team has begun test-
ing new hardware and software technologies
for the development of 3D digital outcrop
models. The primary purpose of this effort is
to facilitate qualitative and quantitative out-
crop characterization.
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Following the 2016 field season, the team has
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2) Representation of asymmetric channel fill in reservoir simulations (where
appropriate), may reduce error in total production estimates by 10-30%.

3) Decreasing net:gross may result in increased reservoir compartmentalization,
especially where channel migration/amalgamation is mostly lateral.
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Left: Ongoing research will expand into e
reservoir-scale modeling at both e
Laguna Figueroa and Arroyo Picana lo- |
cales. Sea-floor morphometrics relating
channel sinuosity and channel fill asym- _
metry (Reimchen et. al, 2016) will be
used to develop channel fills for the sin-

uous Arroyo Picana channels.

4) Reservoir performance is strongly impacted by marginal facies when channels are
laterally stacked.
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5) Upscaling tends to under-represent marginal facies resulting in over-prediction of
reservoir volumes and performance (total production, recovery efficiency, water
breakthrough timing).
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