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Abstract 
 
Enabled by ongoing advances in computer technology and processing algorithms, pre-acquisition feasibility studies using synthetic data are 
becoming more and more accepted in the marine environment. For marine acquisition the near-surface is relatively simple acoustic medium 
which simplifies the computational task for synthetic modelling, enabling large-scale 3D seismic simulations for various scenarios to be run 
within a reasonable time frame. In comparison with onshore acquisition the near surface is a much more complex elastic medium which makes 
finite- difference simulation modelling significantly more compute intensive.  
 
Through developments in modelling and inversion technology a suite of tools are now available which allow us to build complex near-surface 
models without having to revert to full elastic finite-difference modelling. Consequently multiple near-surface models may be generated in a 
relatively short period of time.  
 
This article demonstrates how it is possible to gain an understanding of the onshore near-surface in absence of direct measurements, such as 
uphole surveys. We can utilize the existing seismic data to support near-surface model building and the generation of realistic synthetics.  
 
By varying the parameters of the Earth model and comparing synthetic data with the real seismic data, it is possible to gain an understanding of 
the mechanisms behind the noise trains visible on the real seismic data. We can then analyze how to optimize selection of acquisition 
parameters and data processing schemes with respect to both signal and noise.  
 
Such analyses can include evaluation of the effects of geometry, fold, arrays and noise interference introduced by high productivity techniques. 
The article gives a case-study example of such a workflow approach where it was used to uncover the potential root cause of poor legacy 
seismic data quality. 
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Conclusions

Modelling allows:

• Separation of contributing factors

• Signal

• Coherent noise

• Ambient noise

• Test both acquisition and processing schemes together

• Test different hypotheses

• Quantify errors



• Increased fold 

• Full azimuth

• Broadband energy 

• Point source 

• Point receiver

• High trace density 

Modelling allows investigating these beliefs before acquiring data

Ian Jack, ‘Progress in land seismic technology’,  Finding Petroleum, Oil Voice Forum,  London, 7th March 2013

Towards “better” data



• Good well ties

• Stable wavelet 

• Fits geologic model 

PSPR Full Offset & Azimuth Legacy Array Limited Offset & Azimuth 

Better data
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SEG SEAM Arid Model  - 3D depth model with following properties: 

Vp, Vs, Rho/Density, HTI alpha, HTI delta, HTI gamma, HTI azimuths, Qp

Vp Rho / Density

SEG Arid Model, courtesy of SEAM Phase II Cell size = 6.25 x 6.25 x 6.25  m

Full elastic models  - Example 3D model
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Match?

Modelling

software

Geometry

simulations

Shot records

Yes

No
Model updates

Model

Forward modelling scheme



Method Description Limitation Speed

3D Full Elastic
Full 3D Finite-Difference 

wavefield propagation

Excessive run time 

for Land 3D models 

with realistic 

frequency ranges

2D Full Elastic Finite-Difference
No out-of-plane energy

No out-of-plane scattering
Weeks

1D Full Elastic 
ANIVEC

(Kennett algorithm)

Layer cake geology

No scattering
Days

Elastic wavefield modelling tools
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Point Source / Point Receiver synthetic signal

2 s

1 s

Realistic synthetic shot records

Synthetic ambient noise model
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PSPR gather

After noise attenuation

PSPR gather

Before noise attenuation

Data courtesy of APACHE Corporation 



P-wave only response Full noise model

Point-Source / Point-Receiver synthetic generation 
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Shot-Carpet Orthogonal Array Point-Source Point-Receiver

Modelled acquisition geometries



Parameter Shot-Carpet Orthogonal Array PSPR

Source line spacing (m) 50 200 200

Receiver line spacing (m) 200 200 200

Shot point and receiver point spacing, (m) 200 50 12.5

Maximum IL/XL offset (m) 4400 4400 4400

Number of receiver lines 176 44 44

Number of receivers per line 176 176 704

Total active receivers/patch 30976 7744 30976

Natural fold 1936 484 484

Fold  25 m x 25 m  bins 1936 484 7744

# Sensors per station 12 12 1

# Vibrators per shot point 4 4 1

Relative noise attenuation power √N +22.8 +16.8 dB 0 dB

Geometry simulations in numbers
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Synthetic shot gather FK plot

2 s

1 s

0

20

40

60

80

100

120

F
re

qu
en

cy
, 

H
z

Point-Source / Point-Receiver synthetic data
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Shot Carpet Point-Source / Point-ReceiverOrthogonal Array

Orthogonal Array = 4:1 decimation of Shot Carpet
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Shot-Carpet geometry
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Orthogonal Array geometry
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Point-Source / Point-Receiver geometry
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Shallow window 1400 – 1520 ms Deep window 1600 – 1800 ms
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Methodology highlights many “features”  of current 

acquisition and processing practices

• It is easy to create spurious coherent events 

• Coherent noise attenuation is a key factor – none of the 

chosen geometries and coherent noise attenuation 

processing are fully effective in removing noise

• Using √N to rank geometries appears not to provide the 

correct ranking of the geometries.

Discussion
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