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Abstract

River bends are complicated and dynamic features of meandering fluvial systems; understanding point-bar deposits in seismic and at outcrop is
challenging as successions represent partially preserved remnants. Predictive tools to capture geomorphological details of the internal architecture and
heterogeneity of meander-fills, and to classify them in a meaningful way for comparison is important in understanding the geologic record. This research
uses an integrated GIS and quantitative sedimentological approach to predict and classify the geometry and internal architecture of components of
meandering fluvial systems from different settings to better understand scroll-bar development and modes of growth. A classification scheme identifies
end-member models, which can be used to interpret the origin of ancient point-bar accumulations from their internal heterogeneity and architecture. To
achieve this, a novel ‘Intersection Shape Method’ has been developed that allows quantitative comparison of meanders with markedly differing
morphologies. Measurements of 35 morphometric parameters of 390 meander bends from 13 different rivers (13,650 in total) have been acquired using
Google Earth Pro. Studied rivers were selected to isolate the effects independent variables (e.g., climatic zone, valley slope and discharge); systems
strongly modified by anthropogenic activity have been avoided. Analyses of ancient point-bar successions (Pennsylvanian, Wales; Jurassic, England)
serve as test data sets for the reconstruction of meander morphology from preserved stratal architectures; distributions of 19 lithofacies and 2500
palaeocurrent readings highlight subtle yet predictable variations in ripple, dune and bar growth histories. The approach has yielded the following novel
findings: (i) climatic regime exerts a primary control on meander morphology through its role in determining mean annual discharge, sediment supply,
and vegetation type and density; (ii) fluvial systems with different gradients, sediment calibers, channel sizes, accumulation rates and climate regime all
exhibit different yet predictable trends in meander and scroll-bar development. This method can also be applied to high-resolution seismic slices (e.qg.,
Cretaceous McMurray Formation, Alberta, Canada; Triassic Mungaroo Formation, NW Shelf, Australia) to help infer river characteristics and predict
internal architectures and heterogeneity.
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Point-bar elements representing preserved remnants of meandering fluvial channel systems are

widely recognized in the rock record. They are internally heterogeneous at a variety of scales which Application - the novel metnodologies
results in variations in fluid flow properties and behaviors that are difficult to predict but which are introduced herein have the potential to improve reservoir

. = ) . ) . characterization via the development of a range of predictive
important to understand to maximise hydrocarbon recovery in reservoir successions. This study facies models for meandering fluvial successions

brings us a step closer to understanding the specific controls of the variability in these deposits.
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A) Describes the measurements taken from each studied meander. B) Shows Richards (1982) method for finding centre of curvature. C) Demonstrates the
‘Intersection Shape’ methodology. D) Shows this method as applied to real examples. E) shows that it is important to separate the shape from the scroll
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'Intersection Shape' Methodology developed here. Each style of shape fits into one of Groups 1-4 and as a result, the shape can be quantitatively
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Prediction of Fluvial Point-Bar Internal Architecture and Heterogeneity From Outcrop and System-Independent
Morphometric Analysis of Meander Bends

Typically a style of scroll bar is closely associated with the shape of a meander but it is found here that one shape will not

exclusively give rise to a specific scroll bar style. In this study, a diverse database of different meander characteristics has been

collated from morphometric analysis of 13 rivers (200 individual meanders), that encompass a variety of physiographic and
geographic regions across the globe. Detailed planform morphology maps have revealed a variety of features and behaviors.
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Relationship Between Meander Shape and Scroll-Bar Style

Fly River, Papua New Guinea
Common shape and scroll bar

combinations in this reach of
the Fly River

Senegal River, Senegal

Common shape and scroll bar
combinations in this reach of
the Senegal River

tend to be approximately parallel to the channel. This is
typically seen when meander cut-off is asymmetric.
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(S** refers to meander shape and}
T*.* refers to scroll bar type)

(1) Dominant meander growth
pattern by translation and
expansion with directional
changes leading to further
expansion. The overall shapes
are mostly symmetrical with
some asymmetrical tendencies.

D"‘“"’" (@ Lakes form in abandoned
channels.

(3) Human activity has affected the
n=219 vegetation distribution in some
areas of the floodplain.

n=69

Fly Migration Directions

Fly Flow Directions

(S** refers to meander shape and
T** refers to scroll bar type)

(® Meander growth is dominated by
translation and rotation. These
migrations are noticeably large
and sweeping.

() There are narrow lakes on the
point bar deposits.

Flow i
€——— Diaction | @ Only two scales of river are
seen. There is a wide main
channel and several narrow

(5 Directly around the river, sparse
vegetation is seen. Away from
the channel, denser vegetation

Ob Flow Directions is present.

n=114 n=264

Ob Migration Directions

Types of Cut-off

Three styles of meander abandonment are commonly identified; chute cut-off, neck cut-
off, and avulsion (Erskine 1992). By studying the variability of abandonment in detail,
more can be determined about the characteristics of the system because the style of
cut-off has been found to influence the style of initial growth in the new meander.

Some
tributaries of
the Amazon
River exhibit
this style of
abandonment

SERD G

Bank Erosion and Rotation

Through studying a wide variety of meander bends, a potential correlation has been found
between bank strength and the frequency of rotation of meanders within a reach. Bank strength
is a factor in determining the rate of bank retreat and this in turn influences the growth of the point
bar. Willis and Tang (2010), modelled bank erosion and deposition (see below). Rotation gives
rise to more localised erosion and deposition on the downstream side of the meander, which
indicates that this would be the most likely mechanism to erode a strong bank.

\ .
S1aand T2.1 Pointed cut-off Translation Translation and Expansion Expansion Rotation
The Amazon and Ob rivers, are similar in terms of the distribution of their meander shapes as determined by the 'Intersection Shape' Methodology. A) Shows how reaches of both the S4d and Type 6 c WA i Significant Concave-
Amazon and the Ob rivers are characterized by meanders of a similar type. Both have a similar proportion of scroll bar Type 2. Within Type 2, meanders of the studied reaches of the apstream s e
Amazon are dominated by translation and rotation. There is a tendency towards translating and expansion behavior in the Ob River. Where the style of cut-off in the Amazon seems to aceretion B on
be dominantly asymmetric and erosive, the style in the Ob additionally involves the development of asymmetric forms. Considering the database in its entirety, specific meander accretion
shapes yield consistent scroll bar styles in ~50 % of cases as seen in B) below. In some circumstances, two scroll bar types are equally abundant in a given meander shape as seen in D som
C) below. However within a given fluvial system, scroll bar and shape characteristics are more strongly related. — b Thickness (m)
S2d and T4.2 _/\ irear aceretion
- upward-fining 0o 1 2
A P S3g with T8.1 - !
A Ob River Amazon River Common shape and scroll bar associations O e ere s meander shape and {37 refos to meandor shapo and Point initial movementof
) ﬂ T*.* refers to scroll bar type) new meander is translation Yana River, Russia ElowDiteStion Flow Direction
Ob River (® Dominant meander shapes are (® Dominant meander growth ’
1 i pattern is via expansion with 1
= %ﬁ;ﬁ:xm%?:g:lsaonr:e sqme‘translation and gradual M | d'Ch Ute CUt‘Oﬁ
T T irregular‘meanders have notable directional changes. Chute channel cuts
Flow \vpe 2 Flow asymmeiry. (@ In relation to the size of the river, across before limbs meet
Direction Direction (2) Abandoned channels are meander migration occurs in
overlapping and overprinting. small increments.
i (@ Vegetation is affected by human
Ste and T4.2 O s achty oo oo -
S1dand T 5.1 channels as oxbows. floodplain colonized by dense , /ﬂ
vegetation (not naturally A
Typed S4c and T7.2 ing). Much of the floodplai -
N Type 5 N S** refers to meander shape and T*.* refers to scroll bar type @ 52;2;?:?;:::;:": :{:mg the istcﬁg:-IcgéetaI::d,o © floodplain Rounded initial movement of ) AR el
X . active channel. new meander is expansion A alachicola River USA .
Amazon River C ® O] Abandongd Cg*‘"’:f'? Ctl)ezﬂy pp ’ Both of the river reaches above are frorn the same river section in West Kazakhstan. Because it is from Casplan Sea
Vegetation is variable across the preserved and undisturbed. the same river, the effects of other variables have been minimised and this study attempts to isolate the Volga Delta 1an -
= Type = 251 floodplain; it is characterized as a5 ) LOW Ch Ute CUt-Off effects of differing rates of bank erosion. A) shows more angular shapes (see C), whereas B) shows no
Fly Migration Directions Fly Flow Directions vegetat_ed with areas of sparse Senegal Migration Directions Senegal Flow Directions ® sﬁgﬁr::r:s in abandoned angular shapes but instead a variety of regular asymmetric shapes. —
! ! vegetation. ) e o . Aand B show the locations of the
10 10 river sections studied here. They
ﬂ are both from the Ural River.
% Olan ) — Ob River, Rus: As a river follows its thalweg on
I the outer bank at the apex of
Common shape and scroll bar Comlr,non shape a:d scrol'l1 b?r the meander, fluvial scour
inati i i combinations in this reach of his | i
— S4d and T4.1 S2d and T4.2 S3band T7.3 Sombinations in this reach of t Ob River. "1 Position of the chute e TS I tone o "
e Chute channel cuts channel is low erosion referred to in this study,
Key for Scroll Bars types seen in the Amazon and Ob Rivers across the point bar Meander changes polarity and grows AN s as opposed to bank collapse.
before limbs meet in the opposite direction Mississippi River, USA ﬂ omﬁm il scour at e on
< S1h ‘
(V/\\ (é\:} —~2 (codes refer to meander shape classlrcanon scheme)
e m{fg WZ" S1a and T2.1 The river Ural analysed above shows a gradation from one meandering style to another. A) is the
. - : 2 P ara I Iel ove rl a i n more angular downstream reach in which downstream migration is dominated by translation. B)
W - S3e and T8.2 p p g is further upstream and exhibits a more asymmetric style caused by rotation of the meanders.
ﬁ ’ abandoned Ioo S The shapes identified in each are shown in C) and D). Vegetation varies between A) and B)
S4d and Type 6 S2d and T7.2 S3b and T6.3 p considerably and this could be a factor in the increased bank strength, though isolating this
Type 6.1 Type 7.2 ‘ S** refers to meander shape and T*.* refers to scroll bar type control is not straightforward. Additionally, the system is also likely to be influenced by a variety of
This phenomenon occurs across a variety of autogenic and allogenic factors.
Sym metry In simple models, scroll bars are depicted as being Features Some meanders shapes commonly —~— env1r0nm|er_1tsr.] In tlI:;s study, it octcurs most
_ perpendicular to the channel during cut-off, but in the . L. i S3eand T7.3 commonly in humia environments. . . .
studied examples this trend is not common as scroll bars | | Other features may be used to aid prediction: occur adjacent to others S1aand T2.1 Further development and refinement of the techniques discussed herein for the

characterization of meander shape are being applied to abandoned channel segments and to
ancient preserved meander successions.
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Erskine, W., McFadden, C., & Bishop, P. (1992). Alluvial cutoffs as indicators of former channel conditions. Earth Surface Processes and Landforms, 17(1), 23-37;
Wills, B. J., & Tang, H. (2010). Three-dimensional connectivity of point-bar deposits. Journal of Sedimentary Research, 80(5), 440-454

contact: Catherine Russell

Fluvial & Eolian Research Group
School of Earth and Environment
Leeds, LS2 9JT, UK

TULLOW

Cater 7
email: eecer@leeds.ac.uk A e

PetroleumLeeds URL: http:/ffrg.leeds.ac.uk AREVA  bhpbilliton

W’ woodside Y P F

nexen

A CNOOC LIMITED COMPANY

p dspetrmechnlcal dgoull gsoll N SCARABUS m

Saudi Aramco

&
ConocoPhillips & MURPHY &E°

OIL CORPORATION



Prediction of Fluvial Point-Bar Internal

Architecture and Heterogeneity

UNIVERSITY OF LEEDS

Fluvial & Eolian Research Group
School of Earth and Environment, University of Leeds, UK

Corresponding author: eecer@leeds.ac.uk

Catherine E. Russell, Nigel P. Mountney, David M. Hodgson, Luca Colombera, Robert Thomas

Typically when studying point-bar elements, an incomplete data set is
available at either outcrop or as part of a seismic study. Because of this,
predictive modelling is required to more effectively describe the expected
distribution of lithological heterogeneity within such successions,
including in subsurface hydrocarbon reservoirs. The “Intersection Shape”
Methodology combined with the scroll-bar classification scheme and
other observations can reveal trends and characteristics of modern
systems. These methods can be readily integrated into the analysis of
seismic slices that image ancient preserved scroll bars to predict
characteristic shapes and facies distributions, and therefore potential
processes and controls which in turn will lead to a better understanding of
heterogeneity distribution.

<ana River

Kolyma River

Point bar size

Time 1
1‘ _>
\Z \Z
As a meander grows, it may undergo expansion. If so, the meander

will grow to a size larger than the extent of the most recent point-bar
deposit.

~

500 m

The correlation between the

N

k)
%; Key dimensions for the entire
52 . meander and for the point bar
it - Kolyma River L e thi
55 . e ® show a correlation: this can be
25 @) - Senegal River | used as a predictive tool to show
EE . . where the most recent point bar
e - Yana River A .

deposit lies in an ancient

0 0 . 5 3 meander shape.

Dimensions of point bar (W / nH)

Application to the Subsurface

This meandering reach has been
abandoned through avulsion as it still
maintains the shape of an active
channel. Aside from this it looks like
the dominant mode of cut-off is low
chute cut-off. There are also ‘Fish
Scales’ created by meanders 1) and
4). The overall style of scroll bar
growth is rotation and translation.

Triassic Mungaroo Formation, Australia

1) exhibits rotation and translation and
there is a clear truncation of the
rotating scroll bars by the translating
ones. It also overlays 4) in a ‘Fish
Scales’ manner. 2) had a low chute-
channel and migrated through
translation. 3) the scroll bar is poorly
imaged but appears to record an
irregular shape and therefore likely to
have involved some translation or
rotation or both.

5 9 Ty

a) Reflectivity data, b) UCQ frequency decomposition, c) HD frequency
decomposition reduces vertical smearing and so better shape isolation occurs, d)
Final interpretation of fluvial point-bar and channel architecture (Stuart J. 2014).

A graph to show the approximate
distribution of the Mungaroo meanders

oY, sy "
@- approximate position of Mungaroo meanders
(these relate to the numbers on the
seismic image)

© - position of the Mississippi meanders comparison because the style of meandering is similar

to that of the the meanders imaged in the seismic data

o é ® from the Mungaroo Formation.
29 . In the graph to the left, the numbers
. cluster around the same area as the
% ) . Mississippi river meanders. This tells us
o, e . that the Mississippi meanders are a

5 T T W (Sinuosity) > good analogue for the Mungaroo Fm.

Meander shapes seen in the

Mungaroo Formation
NG

Shapes seen in Mississippi River which
therefore may be found in Mungaroo

2

S4e and T4.2 S4cand T7.2

S** refers to meander shape and T*.* refers to scroll bar type

A

S1fand T2.4

These meander loops are highly
sinuous and the scroll bars in
many are Type 8 of the scroll-bar
classification. There is a dominant
mode of translation and
expansion that culminated in
asymmetric cut-off in many cases.

1), 2) and 3) all show the style of
scroll bar as in T8.2, and therefore
this indicates that there was an
asymmetrical cut-off potentially
repeating from the same section
of river, 4) exhibits translation and
rotation such as in T2.1. The
shape is likely to have been S1d
and the correlation in this
relationship supports this theory.

A Seismic image of Nexen’s property lease of the Lower Cretaceous McMurray Formation
near Fort McMurray, North-east Alberta. (Smith et al. 2009)

Meander shapes seen in the
McMurray Formation

A

S1d and T5.1

Shapes seen in Ob River which
therefore may be found in McMurray

—

S1aand T2.1 S3eand T7.3

S** refers to meander shape and T*.* refers to scroll bar type

S3g with T8.2

A graph to show the approximate
4 distribution of the McMurray meanders
compared to the Ob River

Key
@- approximate position of McMurray meanders
(these relate to the numbers on the
seismic image)

e - position of the Ob meanders

Lo
pE
o ® .@‘ e ©
e X o-©.. ° @?@

0 - 1 H

tH/W (Sinuosity)

In the above graph, there are more points plotting at a high
sinuosity of 2 because the shapes in the McMurray Fm have
been cut-off and abandoned whereas an active channel of the
Ob River has been studied. This research is integrating a
data set of 153 abandoned meander loops from 13 rivers
globally.

The River Ob has been selected for comparison with
preserved meander deposits imaged seismic slices
from the McMurray Formation because the style of
meandering and cut-off is similar.

Application to Reservoir Modeling

Heterogeneity
Distribution

« Numbers and statistics for element modeling and size prediction

« Informed prediction of 3D distribution of lithological heterogeneity in
preserved point-bar elements.

« Development of enhanced predictive models such that reservoir
uncertainty and associated risk is reduced.

Sedimentology \ Reduce
uncertainty

Improved
Models

& Stratigraphy

Conclusions

A limited data set can can serve as a valuable predictive tool when
applying the ‘Intersection Shape’ methodology and the scroll bar
classification scheme

« Observation of the cut-off style helps to understand the processes
that governed evolution of the fluvial system.

« Studying a variety of modern systems in detail reveals characteristics
which can be referenced across systems.

Smith, D. G., Hubbard, S. M., Leckie, D. A., & Fustic, M. (2009). Counter point bar deposits: lithofacies and reservoir significance in the
meandering modern Peace River and ancient McMurray Formation, Alberta, Canada. Sedimentology, 56(6), 1655-1669.;
Stuart J. 2014 unpublished thesis; Subsurface architecture of fluvial-deltaic deposits in high- and low-accommodation settings
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Ancient outcrop 210° SSW

A high-resolution study has

been undertaken to characterize

the internal sedimentary
succession of an ancient point-

bar deposits from a Westphalian

(Carboniferous) “Coal

Measures” succession at Nolton

Haven, Pembrokeshire, UK.
Over 2505 paleocurrents have
been measured and related to
lithofacies distributions via
detailed graphic logging and
architectural depictions of the
distribution of internal bounding
surfaces within the bar element

Nolton
Haven

ragments in
ill.
‘ [/

7
l'.hsjgé"::“

Rootlets and plant

abandoned channel

i Large sets of trough cross-bedding associated with a directional
g% change in the growth trajectory of point bar. “Feathered” mud drapes

s

1

N

@ are common here: impact on sand connectivity.

If the chute channel had been formed by mid-channel bars, coarse or conglomeratic

sand could be expected here; preservation potential of a mid-channel bar is low; chute
channel was more likely formed by a splay.
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hort carbonaceous
drapes. Low continuity.

A series of smaller channels cutting A
through the deposit likely represent g :
minor chute channel development.

Erosional surface.

Concave Bank
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Scour troughs
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Convex Bank

Flood Stage Parallel laminated to thin sand beds

Foreset cross-stratificatio . - 15
Low Water Stage Parallel laminae_ =S5 Small trough sets o
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0 10 20Feet
Horizontal scale

Scour Pool Lower Point Bar B Upper Point Bar - (Chute and

Chute Bar Sediments)

There are some correlations between
models and facies distribution in
outcrop, including style of grading and
facies changes up palaeo bank.

Conglomerate

‘030° NNE|

Over 1121 mud drapes were A £ -
] "‘ — == ’-.~ n=24
measured, 37 detailed logs Sketch of “feathered” mud drape ,é'gﬁl Carb 9 b ; =) < _ g Conglomerate and sandstone beds
drawn and over 503 clasts have Pe. Sy arbonaceous drapes become sy — Coal granules common across Higher frequency of occurrence of slumped and deformed.
been measured, counted and 2m % 2m ) rare and mud drapes common in .- 5 m e om carbonaceous drapes. They become 5 m erosional surfaces; rapid changes in 2m
classified. = = ~50 om long zone associated with changed migration direction. gy —gy— B o ' less common towards SSW. - . m——mmm ] ° facies due to repeated reworking.
— = = — womea ] References B
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