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Abstract

We exhibit 160" of Niobrara core from the Whiting Razor 25-2514, Weld County, Colorado. The exhibited interval covers the productive Niobrara A
chalk, the Niobrara A marl, the productive upper and lower Niobrara B chalk benches and most of the Niobrara B marl. Higher frequency cyclicity and
lithologic variation is demonstrated within the chalks due to abundant, thin, black, marly interbeds up to 3 thick; conversely, the A and B marl intervals
contain many, thinner, non-amalgamated chalk interbeds. The chalk interbeds within the marls have suppressed UV hydrocarbon fluorescence, probably
due to UV quenching from associated elevated asphaltene content. All intervals, including the overlying Sharon Springs Member of the Pierre Shale have
bentonites which range from 4” thick in the Sharon Springs to <1/8” thick within the Niobrara Marls. All the bentonites fall below wireline log resolution
(with the exception of resistivity imaging), however, we emphasize their distribution with UV photos that highlight each and every bentonite based on
bright UV fluorescence. Rock mechanical properties such as Poisson's Ratio and Young's Modulus calculated from dipole sonic logs are largely ignorant
of the presence of these abundant, thin, yet very weak, ductile bentonites. Hydraulic Stimulation modeling based on wireline log properties therefore
grossly underestimates the mechanical heterogeneity of the Niobrara. Furthermore, the bentonites are too thin and weak to be plugged for static rock
mechanics evaluations. To address these limitations, we made extensive usage of the Equotip” “Bambino” micro-rebound hammer to measure closely
spaced Unconfined Compressive Strength (UCS) at least every 6” while also covering each and every one of the hundreds of thin bentonites. The UCS
from the micro-rebound hammer is compared not only with wireline dipole sonic based parameters, but also with UCS from TerraTek's “Scratch Test”.
The Equotip-derived UCS curve, even when running-average-smoothed, demonstrates much greater UCS dynamic range, capturing the very weak
bentonite interbeds. Not only do the bentonite (and marl) interbeds divide the chalks into multiple subtle mechanical stratigraphic intervals, but marly
intervals with most abundant bentonites impact hydraulic fracture efficiency by limiting proppant placement to the main chalk benches. While fluid-filled
fractures have rather extensive vertical propagation throughout the Niobrara A-B-C at peak pump rates, fracture offsets across bentonites and ensuing
proppant embedment phenomena eventually render the main marl intervals as barriers to effective stimulation. The impact of bentonites on hydraulic
stimulation efficiency was supported by proppant tracer studies in a vertical well stimulation scaled be proportionate to an individual horizontal frac stage.
Bentonites changed from our “foes” to our “friends” because their impact on completions supports our multiwall development plans with separate A, B,
and C horizontal well targeting.
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ABSTRACT: we exhibit 80’ of Niobrara core from the Whiting Razor 25-2514, Weld County, Colorado. The exhibited interval covers the productive lower Niobrara B

chalk bench and the upper portion of the Niobrara B marl. Higher frequency cyclicity and lithologic variation is demonstrated within the chalks due to abundant, thin,
black, marly interbeds up to 3” thick; conversely, the A and B marl intervals contain many, thinner, non-amalgamated chalk interbeds. The chalk interbeds within the
marls have suppressed UV hydrocarbon fluorescence, probably due to UV quenching from associated elevated asphaltene content.

All intervals, including the overlying Sharon Springs Member of the Pierre Shale have bentonites which range from 4” thick in the Sharon Springs to <1/8” thick within
the Niobrara Marls. All the bentonites fall below wireline log resolution (with the exception of resistivity imaging), however, we emphasize their distribution with UV
photos that highlight each and every bentonite based on bright UV fluorescence. Rock mechanical properties such as Poisson’s Ratio and Young’s Modulus calculated
from dipole sonic logs are largely ignorant of the presence of these abundant, thin, yet very weak, ductile bentonites. Hydraulic Stimulation modeling based on wireline
log properties therefore grossly underestimates the mechanical heterogeneity of the Niobrara. Furthermore, the bentonites are too thin and weak to be plugged for
static rock mechanics evaluations. To address these limitations, we made extensive usage of the Equotip™ “Bambino” micro-rebound hammer to measure closely spaced
Unconfined Compressive Strength (UCS) at least every 6” while also covering each and every one of the hundreds of thin bentonites. The UCS from the micro-rebound
hammer is compared not only with wireline dipole sonic based parameters, but also with UCS from TerraTek’s “Scratch Test”. The Equotip-derived UCS curve, even when
running-average-smoothed, demonstrates much greater UCS dynamic range, capturing the very weak bentonite interbeds.

Not only do the bentonite (and marl) interbeds divide the chalks into multiple subtle mechanical stratigraphic intervals, but marly intervals with most abundant
bentonites impact hydraulic fracture efficiency by limiting proppant placement to the main chalk benches. While fluid-filled fractures have rather extensive vertical
propagation throughout the Niobrara A-B-C at peak pump rates, fracture offsets across bentonites and ensuing proppant embedment phenomena eventually render the
main marl intervals as barriers to effective stimulation. The impact of bentonites on hydraulic stimulation efficiency was supported by proppant tracer studies in a
vertical well stimulation scaled (fluid, proppant, & net stress) to be proportionate to an individual horizontal frac stage. Bentonites changed from our “foes” to our
“friends” because their impact on completions supports multiwall development plans with separate A, B, and C horizontal well targeting.
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Fig. 1. Whole core example from a

Niobrara chalk showing an oil-stained | | el et e el =

natural fracture (plain light at left and Fig. 2. Outcrop example from the Brushy Canyon Fig. 3. Close-up from same outcrop as Fig. 2 showing fracture “step-over” across a bentonite.

fluorescing under UV light a right) Formation (Guadalupe National Park, West Texas) Shearing through a bentonite would simply smear clay and in the case of hydraulic fractures not

terminating against a 1” bentonite showing numerous fractures highlighted in red only be unlikely to remain open against overburden stress, but would almost certainly involve

(labeled “E”). terminating against a 1 inch bentonite highlighted proppant embedment, if proppant could even follow this tortuous path. Similar fracture step-
in yellow. over geometries have been described at intermediate-scale strength contrasts between

mechanical interfaces by Helgeson & Aydin (1991) and Cooke &Underwood (2001).
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- HLD =611 Leebs
- UCS=86.4 MPa or 12,529 psi

“HLD” is the scale that is read by the Equotip
: Bambino micro-rebound hammer in “Leebs” units.

* Commonly used to test metal hardness

+  Fast, cheap, and repeatable method that is non-

HLD = 191 Leebs
b | UCS=2.2 MPa or 13 psi

destructive and requires small sample size

UCS is the unconfined compressive strength

. 1 of the rock which is the stress load at which a

rock fails if pressed without confining stress.

{ UCS measurements even on the thinnest of

bentonite horizons (<0.01”)

' | HLD = 565 Leebs

UCS = 69.6 or 10,095 psi

All measured samples Bentonites
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Fig. 7. Track 3 shows discrete Equotip UCS values in blue and orange circles.

The orange circles

correspond to thin bentonite UCS values--note they are MUCH lower than the overall UCS population;
they are also lower than the smoothed UCS curve designed to mimic dipole sonic log resolution of
approximately 2 feet.
Modulus and Poisson’s Ratio, all derived from the wireline dipole sonic. Track 6 is “brittleness index”
(E/PR). Note that none of the wireline-derived rock properties has resolution or dynamic range to

capture the impact of the low UCS thin bentonites.

Conclusions:
consequently, we captured their distribution from core observation. Rock mechanical properties such as Poisson’s Ratio and Young’s Modulus calculated from dipole sonic
logs are largely ignorant of the presence of these abundant, thin, yet very weak, ductile bentonites. Hydraulic stimulation modeling based on wireline log properties,
therefore, grossly underestimates the mechanical heterogeneity of the Niobrara. To address these limitations, we made extensive usage of the Equotip™ micro-rebound
hammer to measure Unconfined Compressive Strength (UCS) of each and every one of the hundreds of thin bentonites.

Track 4 shows shear and compressional velocities, Track 5 shows Young’s
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Fig. 8. Stages 4-9 of a limited-entry fracture stimulation of the B chalk in a vertical well were
tagged with Iridium, Scandium, and Antimony radioactive tracers. The stimulation was scaled

to be approximately equivalent to a horizontal single entry stage. job.
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Fig. 9. Results of tagged vertical fracture stimulation showing that neither the Iridium (red),
Scandium (yellow), nor Antimony (blue) proppant extended beyond the bentonite-rich marl
intervals bounding the B chalk. Propped fractures do not bust out of zone and instead stay
confined to the ‘B’. The net pressure gain during the stimulation was very similar to that
experienced during horizontal stages, another indicator that we were successful in replicating
the results of a standard frac job.
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Fig. 10 Sketch depicting contrast in vertical
hydraulic fracture height (red dashed lines) at
peak pump rate vs. hypothesized spots/zones
of fracture annealment at any one of the many
bentonites bounding the Niobrara B chalk
interval. The annealment from bentonite
shear with or without proppant embedment at
step-over zones results in eventual isolation of
the B Chalk interval from the A Chalk interval.

The Niobrara Formation has abundant very thin bentonites. All individual bentonites fall below dipole sonic and gamma ray wireline log resolution;

A scaled and radioactive proppant traced fracture stimulation within a vertical well demonstrated that the A and B marly intervals with most abundant bentonites impact
hydraulic fracture efficiency by limiting proppant placement to the intervening B chalk bench. While fluid-filled fractures have rather extensive vertical A
propagation throughout the Niobrara A-B-C at peak pump rates, fracture offsets across bentonites and ensuing proppant embedment phenomena eventually

render the main marl intervals as barriers to effective stimulation.
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