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Abstract 

 
The Woodford Shale (Devonian-Mississippian) of the southern United States has become one of the most important 
unconventional hydrocarbon reservoirs in the country. Chiefly responsible for its efficacy as a resource are its remarkably high 
TOC, brittle structural nature, and an abundance of Type II marine kerogen. Recently the Woodford has been placed within a 
sequence stratigraphic framework in order to understand the subtle heterogeneities throughout the formation, and organic 
geochemical analyses may be able to increase the resolution of this ambition. Our study, which has the goal of using biomarkers 
to assess weathering and paleoenvironment, has determined that a number of aromatic hydrocarbons occur in the bitumen 
recovered from the Woodford Shale in southern Oklahoma, notably pyrosynthetic compounds including benzo[e]pyrene and 
benzo[ghi]perylene. Additionally, the hopanoid and steroid hydrocarbons display significant levels of biodegradation. The 
nature of these altered compounds, along with several other aromatics, may be indicative of modern weathering, 
paleoweathering, and an influx of weathered terrigenous organic matter into the depositional system. In terms of hydrocarbon 
producibility, delineating the boundaries of such a zone within the Woodford Shale may provide some benefit to those parties 
actively looking to utilize it as a resource play. 
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Objectives

• Report biomarker concentrations for Woodford 
Shale in McAlister Cemetery Quarry

• Evaluate apparent weathering in the Upper 
Woodford

• Correlate geochemical data to sequence 
stratigraphic framework of Serna-Bernal (2013)



Introduction

• Woodford is one of the most 
important hydrocarbon source rocks 
in OK

• 388-359 Ma

• 2nd order depositional sequence 
(~29 Myr) (Serna-Bernal, 2013)

• Dark gray, marine, siliceous and 
carbonaceous shale

• Typically high TOC (7-15 wt.%)

• Mostly Type II Kerogen

• Varying degrees of thermal maturity



• Woodford Shale displays various lithofacies (siltstone, 
dolomite, chert) and 3rd order parasequences (Serna-

Bernal, 2013).



Geologic Setting (385 Ma)

• Blah blah 
blah

• Middle-Late Devonian 
deposition influenced by 
glacial eustasy, ocean 
upwelling, and terrigenous
sediment influx

• OK Basin was within 
shallow, epicontinental sea

Blakey, 2009



McAlister Cemetery Quarry
• 34.079° N, 97.156° W

• 122 m section

• ~320°, 35-55° NE

• East limb of Rock Crossing Anticline

200 m



Sampling
• 6 profiles were utilized in the quarry, modified after Serna-Bernal (2013)
• 22 rock samples excavated at depth of ~1 m from quarry floor
• 4 samples were used from remnant Serna-Bernal samples (2, 10, 13, 19)



Experimental
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AVG. TOC
• Upper – 5.6 wt.%
• Middle – 12.2 wt.%
• Lower – 13.8 wt.%

AVG. CC
• Upper – 5.5 wt.%
• Middle – 7.2 wt.%
• Lower – 3.1 wt.%

• High TOC samples 
generally dark in 
color

TOC measured by LECO method; “CC”  is carbonate content



Kerogen Type

Image from geoscienceworld.org
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Thermal Maturity

• Tmax values 413-429

• Thermal maturity close to oil-window threshold

• Gas-window samples artifacts of low TOC and 
weathering

• Measured %Ro values ~0.53 (Cardott, 2012)



Biodegradation

• Classification scheme for oils, based on 
biomarkers with 0 (least degraded) to 
1000 (most degraded) (Larter et al., 2012)

• Entire section >700, indicating heavy 
biodegradation throughout

• Serna-Bernal samples relatively more 
degraded than adjacent samples

• Uniform exposure at surface likely 
responsible for degree of degradation

• Universal heavy biodegradation suggests 
biomarkers affected equally throughout 
section
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Aryl Isoprenoids
m/z = 133, 134

Sample 5



Aryl Isoprenoids

• Aromatic carotenoids
show two periods of
abundance

• AIR fluctuates throughout
Lower-Middle member,
declines in Upper

• Low AIR values may indicate
persistent PZA

AIR = (C13-17/C18-22) 2,3,6-trimethyl aryl isoprenoids



Naphthalenes and Cadalene

• 1,2,5-TMN and cadalene
show Lower-Middle 
member similarity

• TeBR typically decreases 
with biodegradation, but 
follows cadalene in lower 
section

• Cadalene fluctuation may be 
suggesting terrigenous input

TeBR = 1,3,6,7-TeMN/1,3,5,7-TeMN



Perylene

• Perylene and cadalene
show similar 
distribution

• Both are likely from 
terrigenous source

• Peak abundances may 
indicate 3rd order HST

• Decreases in Upper 
member contrast the 2nd

order HST



Pyrogenic PAHs

• Pyrogenic compounds 
correlate to cadalene

• More similar to perylene in 
Upper member

• Likely from combustion-
derived source

• Modern weathering may 
have a slight effect



2nd Order Sequence
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3rd Order Influence 

• Correlative peak abundances of terrigenous biomarkers suggest possible 3rd order HST

• Upper Woodford potentially affected by paleoweathering activity



Paleoweathering?
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Conclusions

• The Woodford Shale of the McAlister Cemetery Quarry contains the geochemical 
make-up of a highly productive source rock

1. TOC ranging 0.07 to 15.6 wt.%
2. Mostly Type II Kerogen
3. Immature/Early Maturity Window

• Modern surface weathering and biodegradation has had a substantial impact on all 
members of the formation, particularly so in the n-alkanes and Serna-Bernal samples

• TOC and other biomarker parameters suggest that 2 intervals within the Upper 
Woodford were potentially subaerially exposed and paleoweathered.

• Influxes of weathered terrigenous organic matter appear to occur in all sections of 
the Woodford Shale in this quarry.

• The Woodford Shale represents an overall 2nd order depositional sequence, with 
several 3rd order parasequences throughout its progression.
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