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Abstract 

Continental breakup controls the origin as well as the geometric and thermal evolution of sedimentary basins, and consequently 

is of major importance for petroleum exploration. The architecture of basins is controlled by extensional faults formed at the 

onset of rifting, and the geometry of such faults governs the overall sedimentary thickness, depositional environment, fluid 

pathways and thermal conditions. Numerical models have to date struggled to capture the complex expression of continental 

extension in nature, which features a variety of structures. In addition, some extension systems have been accompanied, and 

possibly triggered, by voluminous magmatism; whereas others involved relatively little magma activity. Some extensional 

systems have been stretched for more than 100 Myr prior to breakup, whereas others ruptured to produce a passive margin after 

only 5–10 Myr. In an attempt to better understand the variety of continental deformation modes, we have incorporated the 

explicit role of magmatism and metamorphic fluids in addition to the classical brittle localization mechanism during extension 

of the lithosphere (Liu et al. 2014). These three different weakening mechanisms may act as triggers for localization of 

deformation. They represent physically distinct processes that can all occur simultaneously, i.e. with some overlap in time and 

space. Our new model also treats melting through the incorporation of parameterized free-energy curves generated from the 
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MELTS model for phase equilibria. The application of the numerical models to real case studies led to identification of a new 

style of tectonics, where instead of breaking plates apart through fast brittle faults that propagate into the ductile realm, the 

opposite mechanism is observed. The propagation of melt-rich ductile shear zones upwards into the brittle domain requires 

longer time scales but is extremely efficient and can potentially break cratons. We present an application to plate breakup in the 

Arabian Peninsula that provides new insights into extensional processes and the timing between initiation of extension and of 

magmatism. These models help understanding and improving thermal and depositional models of basins, and may provide an 

enriched geodynamic exploration toolkit for search of (un)conventional oil and gas reserves in previously unexplored domains.  
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The Problem 



Péron-Pinvidic and Manatschal (2010) 

Section through the Orphan-Newfoundland-Iberia System 

The structure of hyper-extended rift-systems 

Major observations from Gianreto Manatschal 
• Structures at hyper-extended margins are complex, poly-phase and strongly 3-D 
 

• Occurrence of continental ribbons, H-blocks, extensional allochthons and outer highs  
 

• Ample evidence for post-breakup magmatic activity 
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Extending the lithosphere 

proposed conceptual geological models 

Pu hClIr (McKerlzic, 1978) 
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Reflection seismic data 
(SCREECH2, IAM9, LG12, ISE17) 

Newfoundland Iberia 

Péron-Pinvidic and Manatschal (subm)  

Architecture of rift basins is different in the proximal and distal margins 

(coupling vs. decoupling / high- vs. low-angle faulting)  

Iberia Abyssal Plain (LG12) Jeanne d’Arc Basin 

Iberia/Newfoundland 



1. Conventional 

Geomechanics Approach 



 
 
Presenter’s notes: Mechanical damage models have quite maturely developed. Generally, two fundamentally different processes are 
considered. The first process is a classical brittle damage (dilatancy). The second process is a creep damage caused by the slow creep 
deformation of the solid rock matrix and the associated growth/shrinkage of micropores.  
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Lavier and Manatschal  NATURE 2006 
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Descriptive Models put the model results into the 

assumptions; each model needs new assumptions 

Roger Buck 2006  
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2. Unconventional 

Geomechanics Approach 



Predictive Models: Complexity arises out of physics  

Regenauer-Lieb  et al. Nature 2006 

If the right physics is found one material model can explain all observation 

descriptive predicitve 
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Energy Feedback  

2006 “Only shear heating feedback” 

2009 -2014 “Addition of fluids, first dissolution-precipitation then melts” 

2006 2009 2014 
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Regenauer-Lieb et al 2006 
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Presenter’s notes: We try to understand to resolve some of these questions by insights from numerical modelling. We use a three-
layer elasto-visco-plastic model made of olivine lithospheric mantle, feldspar lower crust and quartz upper crust. 

Unconventional Geomechanics 
a) No Melting considered 
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Three stages of rifting 
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Mantle core complex phase 

Roberto Weinberg 



Whitmarsh 2001 Nature 

Our Simlated strain contours (red high strain) 
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Presenter’s notes: Partial melting of rocks occurs when temperature is higher than the liquids of at least one mineral. When 
conditions for melting are first met, melt accumulates on the grain boundaries and softens the rock matrix. Thus, partial melting can be 
recognised as the third type of damage. 

Unconventional Geomechanics Approach 
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Presenter’s notes: For different ranges of temperature and pressure, we should use proper package of MELTS family to perform the 
thermodynamic calculations. Generally, we specify the composition of the rock, temperature and pressure. Then we obtain 
thermodynamic outputs, including melt fraction. 
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Presenter’s notes: The first geological application of this method is to the area of Azraq Sirhan, which is a rift parallel to Suez rift. 
The geodynamical features include: initially magma-absent activity, later magma-rich activity (~ 30 Ma), slow extension, and 
developed in relatively cold continent. So the question is: Why is melting localised and maintained here? 

An application 

Initially magma­
absent activity 

Later magma-rich 
activity (- 30 
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Arabian Shield is 
with low heat 
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Why is melting 
localised and 
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 Harrat Ash-Shaam Volcanic Province 

Origin and magma pathways for intraplate volcanism: a new damage mechanics model  
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Abstract 
We address the question of  melting at the base of  the lithosphere and the opening of  

pathways capable of  transferring melt to the surface in an intraplate setting of  an 

extending continental lithosphere. Our numerical formulation, which combine three 

damage mechanisms (classical brittle damage, metamorphic fluid-assisted damage, and 

melt damage), allows an extremely efficient melt transfer. This may explain melt 

localization in the proximity of  pre-existing crustal structures, as recognized, for example, 

in the occurrence of  ubiquitous volcanism parallel to the Azraq-Sirhan rift system. 

Helmholtz free energy  contains solid deformation, melt and latent heat:   

The intrinsic dissipation function (see Fig. 1) is : 

Conclusion 

Our results (Fig. 4) show that within a short 

timeframe (~2 Ma), melt damage can 

propagate from the bottom of  the 

lithosphere upwards and efficiently create 

channels to the surface which can be 

focused further by a pre-existing structure 

(e.g. notch). Our model results may be 

applicable to explain intraplate magmatic 

provinces, such as Harrat Ash Shaam alkali 

basalts in the proximity of  the Azraq-

Sirhan graben (Fig. 5). Our models may 

explain how and why voluminous Miocene 

to recent volcanism was localized along the 

Azraq-Sirhan system. 

Method 

(total strain, inelastic strain, temperature , mechanical damage, melt fraction)  

solid contribution 

melt contribution 

latent heat contribution 

dissipation of  inelastic deformation and 

mechanical damage, respectively 

(Karrech et al., 2011) 

(1) 

(can be deduced from Eq. (1) and then used in the deduction of                  
and in following) 

dissipation of  melt damage, where 

variation of  the melting function over 
temperature  

variation of  the melting 
function over volume  

¶T /¶Ym ¶V /¶Ym

(These two variations can be obtained from calculations of  MELTS 
http:/ / melts.ofm-research.org/  a Helmholtz/ Gibbs free energy minimizer, see Fig. 2) 

(2) 

(3) 

The numerical implementations are implemented in a User Material Subroutine 

(UMAT) for Abaqus Standard. The model setup is shown in Fig. 3 and the model 

results in Fig. 4. 

Fig. 2.  MELTS Isenthalpic Alkali basaltic melt fraction 
(eqn. 3) as function of  T and V. 

Fig. 3. Four-layer lithosphere (200 x 160km) with notch (a) 
and initial temperature distribution (b). 

Fig. 4 (a-f). Evolution of  damage and partial melt during slow 
extension (6mm/ yr). 

Results 

55ka 55ka 

Fig. 5.  (a) Distribution of  Cenozoic magmatism in the 

western Arabian peninsula (after Weinstein et al., 2006); 

(b) Early Oligocene reconstruction of  the Arabian peninsula 

(Lyakhovsky et al., 2012).  
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Fig. 1.  Feedback diagram  of  intrinsic 
dissipation (eqn. 2)  with triple damage 

mechanics model. 
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Presenter’s notes: We analysed a series of models matching the geological settings. One initial model here. Some models without a 
notch, some with a notch, and the depth of the notch may different from model to to model. And the temperature distribution at depth 
may slightly different as well. 

Initial model: Like previous model but higher temperature 
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Presenter’s notes: For models with a notch the propagation of mechanical damage are similar, from bottom to top. Only when the 
notch is quite deep, such as this one, it affects the propagation of the mechanical damage. These models show us that melt localization 
and efficient melt transfer can be explained by coupling melt damage to mechanical damage in the lithosphere. This may explain the 
fast transition from magma-absent to magma rich extension even in slow deforming and relatively cold continental settings.  
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Azraq-Sirhan Graben Model: Regenauer-Lieb et al.  2014 

Adding sublithospheric 

melts can solve the 

transition from magma-

poor to magma rich 

breakup 
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Summary 

The time has come to lift numerical modeling of basins up from a 

descriptive conventional geomechanics approach to a predictive  

unconventional geomechanics approach  

Rich complexity of rifted margins can be reproduced by numerical 

modeling by just considering fundamental energy feedbacks 

The model has been applied to three case studies but needs further 

testing 

We have developed a new MOOSE* application for Unconventional 

Geomechanics and Reservoir Engineering 

 

 

       REDBACK* 
 
an Open-Source Highly Scalable Simulation Tool for Rock Mechanics 
with Dissipative Feedbacks 

* a MOOSE application (http://mooseframework.org) 

https://github.com/pou036/redback 



Thank you! 




