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Abstract

Continental breakup controls the origin as well as the geometric and thermal evolution of sedimentary basins, and consequently
is of major importance for petroleum exploration. The architecture of basins is controlled by extensional faults formed at the
onset of rifting, and the geometry of such faults governs the overall sedimentary thickness, depositional environment, fluid
pathways and thermal conditions. Numerical models have to date struggled to capture the complex expression of continental
extension in nature, which features a variety of structures. In addition, some extension systems have been accompanied, and
possibly triggered, by voluminous magmatism; whereas others involved relatively little magma activity. Some extensional
systems have been stretched for more than 100 Myr prior to breakup, whereas others ruptured to produce a passive margin after
only 5-10 Myr. In an attempt to better understand the variety of continental deformation modes, we have incorporated the
explicit role of magmatism and metamorphic fluids in addition to the classical brittle localization mechanism during extension
of the lithosphere (Liu et al. 2014). These three different weakening mechanisms may act as triggers for localization of
deformation. They represent physically distinct processes that can all occur simultaneously, i.e. with some overlap in time and
space. Our new model also treats melting through the incorporation of parameterized free-energy curves generated from the
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MELTS model for phase equilibria. The application of the numerical models to real case studies led to identification of a new
style of tectonics, where instead of breaking plates apart through fast brittle faults that propagate into the ductile realm, the
opposite mechanism is observed. The propagation of melt-rich ductile shear zones upwards into the brittle domain requires
longer time scales but is extremely efficient and can potentially break cratons. We present an application to plate breakup in the
Arabian Peninsula that provides new insights into extensional processes and the timing between initiation of extension and of
magmatism. These models help understanding and improving thermal and depositional models of basins, and may provide an
enriched geodynamic exploration toolkit for search of (un)conventional oil and gas reserves in previously unexplored domains.
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The Problem



The structure of hyper-extended rift-systems
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Major observations from Gianreto Manatschal
« Structures at hyper-extended margins are complex, poly-phase and strongly 3-D

» Occurrence of continental ribbons, H-blocks, extensional allochthons and outer highs
» Ample evidence for post-breakup magmatic activity
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Péron-Pinvidic and Manatschal (2010)



Extending the lithosphere
proposed conceptual geological models

Pure shear (McKenzie, 1978) Simple shear (Wernicke, 1985)

post-rift sediments

salt

pre-salt (sag phase) sediments
pre-rift sediments

upper crust

(qtz-fsp rich) middle/lower crust
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Iberia/Newfoundland

Reflection seismic data
(SCREECHZ2, IAM9, LG12, ISE17)
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(Descriptive) numerical models
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Presenter’s notes: Mechanical damage models have quite maturely developed. Generally, two fundamentally different processes are

considered. The first process is a classical brittle damage (dilatancy). The second process is a creep damage caused by the slow creep
deformation of the solid rock matrix and the associated growth/shrinkage of micropores.
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Descriptive Models put the model results into the
assumptions; each model needs new assumptions
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Predictive Models: Complexity arises out of physics

If the right physics is found one material model can explain all observation
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Energy Feedback
2006 “Only shear heating feedback”
2009 -2014 “Addition of fluids, first dissolution-precipitation then melts”
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Unconventional Geomechanics | )
a) No Melting considered Y '

Gideon
Rosenbaym

100 km
Quartz Upper/Middle crust
Q.6 cm/a ZE‘ Feldspar Lower crust 0.6 cm/a
(o0

Upper mantle

« Elasto-Visco-Plastic rheology

. Eg)ension velocity 0.6 cm/a at each side over a period of 13.7 Myr (B =

» Crustal thickness — 30, 40, 50, 60 km
 Crustal heat flow — 50, 60, 70, 80 mW/m?

Presenter’s notes: We try to understand to resolve some of these questions by insights from numerical modelling. We use a three-
layer elasto-visco-plastic model made of olivine lithospheric mantle, feldspar lower crust and quartz upper crust.



Three stages of rifting

60 (a) diffuse rifting




Mantle core complex phase
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10 km Continental crust Mantle peridotite

Whitmarsh 2001 Nature
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Unconventional Geomechanics Approach
b) Partial melting considered
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Presenter’s notes: Partial melting of rocks occurs when temperature is higher than the liquids of at least one mineral. When
conditions for melting are first met, melt accumulates on the grain boundaries and softens the rock matrix. Thus, partial melting can be
recognised as the third type of damage.



MELTS Package
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Presenter’s notes: For different ranges of temperature and pressure, we should use proper package of MELTS family to perform the
thermodynamic calculations. Generally, we specify the composition of the rock, temperature and pressure. Then we obtain
thermodynamic outputs, including melt fraction.



An application

Mediterranean Sea

Initially magma-
absent activity

Later magma-rich
activity (~ 30
Ma)

Slow extension
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with low heat
flow (cold)

Why is melting
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Presenter’s notes: The first geological application of this method is to the area of Azraq Sirhan, which is a rift parallel to Suez rift.
The geodynamical features include: initially magma-absent activity, later magma-rich activity (~ 30 Ma), slow extension, and
developed in relatively cold continent. So the question is: Why is melting localised and maintained here?
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Initial model: Like previous model but higher temperature
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Presenter’s notes: We analysed a series of models matching the geological settings. One initial model here. Some models without a
notch, some with a notch, and the depth of the notch may different from model to to model. And the temperature distribution at depth
may slightly different as well.
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Presenter’s notes: For models with a notch the propagation of mechanical damage are similar, from bottom to top. Only when the
notch is quite deep, such as this one, it affects the propagation of the mechanical damage. These models show us that melt localization
and efficient melt transfer can be explained by coupling melt damage to mechanical damage in the lithosphere. This may explain the
fast transition from magma-absent to magma rich extension even in slow deforming and relatively cold continental settings.
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Azrag-Sirhan Graben Model: Regenauer-Lieb et al. 2014




Observed vs predicted subsidence
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Summary

The time has come to lift numerical modeling of basins up from a
descriptive conventional geomechanics approach to a predictive
unconventional geomechanics approach

Rich complexity of rifted margins can be reproduced by numerical
modeling by just considering fundamental energy feedbacks

The model has been applied to three case studies but needs further
testing

We have developed a new MOOSE* application for Unconventional
Geomechanics and Reservoir Engineering

REDBACK*

https://eithub.com/pou036/redback

an Open-Source Highly Scalable Simulation Tool for Rock Mechanics
with Dissipative Feedbacks

* a MOOSE application (http://mooseframework.org)








