"SIntegrating Standard Petrophysical Analysis with Statistical Measures of Petrophysical Heterogeneity to Estimate
Petrofacies in Mississippian Limestone, North-Central Oklahoma*

Fnu Suriamin® and Matthew J. Pranter

Search and Discovery Article #41767 (2016)**
Posted February 1, 2016

*Adapted from poster presentation given at AAPG Mid-Continent Section meeting in Tulsa, Oklahoma, October 4-6, 2015
**Datapages © 2016 Serial rights given by author. For all other rights contact author directly.

ConocoPhillips School of Geology and Geophysics, University of Oklahoma, Norman, OK, USA (fnu.suriamin-1@ou.edu)

Abstract

Mississippian carbonate and chert reservoirs of the mid-continent are extremely complex and exhibit different scales of mineralogical,
lithological, and petrophysical heterogeneity. The Mississippian interval consists of four high-frequency cycles that are capped by
unconformable surfaces related to subaerial exposure. Key lithologies from core description vary from chert-brecciated limestone, bedded
chert-brecciated limestone, bioturbated grainstone and mudstone, and dense, unaltered limestone. Diagenetic products including silicification,
dissolution, compaction, fracturing, and brecciation are observed throughout this interval. Relationships of petrophysical methods and
statistical measures of heterogeneity are explored to predict petrofacies. Initially, detailed core description, standard petrophysical analysis, and
the Multi-Resolution Graph-Based Clustering method are conducted. Statistical measures of heterogeneity, including Lorenz and Dual-Lorenz
Coefficient, are calculated on bulk density, neutron porosity, and sonic well logs in the Mississippian interval to evaluate which well logs best
capture heterogeneity and define the optimal number of clusters needed to define the petrofacies. The results of core analysis, petrophysical
analysis, and numerical measures of petrophysical heterogeneity are integrated to estimate lithofacies in non-cored wells and to identify
stratigraphic cycles in order to interpret the sequence-stratigraphic framework.
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1. Abstract 3. Study Area and Geological Background 4. Methods and Proposed Workflow

Mississippian Limestone of the mid-continent is an unconventional carbonate
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5. Preliminary Results - Core Description and Petrophysical Analysis
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Figure 9. Preliminary core description of well Frieouf 1-7 SWD. This well is located in the north of study area.
The deepest lithofacies is characterized by glauconitic sandstone. Shoaling-upward cycle is typically started
with bioturbated mudstone-wackestone, bioturbated packstone, and capped by bioturbated grainstone or
skeletal grainstone. Occasionally, the top section is characterized by nodular grainstone or peloidal laminat-
ed packstone-grainstone or chert-brecciated limestone.

Figure 10. Core photos show chert-brecciated
limestone on white light (1A) and UV light (1B).
The chert-brecciated limestone is characterized
by very light gray-light gray granule to boulder
size grains, hard, some grains show rind, mo-
nomictic, subangular to angular in shape,
matrix supported, poorly sorted, occasionally
skeletal grains are observed, no visible porosity.
Note that UV light photo shows ?calcite mineral
fluorescence.

Figure 11. Core photos show skeletal pack-
stone-grainstone on white light (2A) and UV
light (2B). This lithofacies is typically described
as light olive gray - yellowish brown, fine to
medium sand size, hard, grain supported, mas-
sive, rare ?chicken-wire structure, common to
abundant altered skeletal grains including cri-
noids, brachiopods, bryozoans, and ?spicules,
stylolites and fractures are present, no visible
porosity.

Figure 12. Core photos show peloidal laminat-
ed packstone-grainstone on white light (3A)
and UV light (3B). This lithofacies is typically de-
scribed as medium gray - dark gray, occasion-
ally light gray, silt to very fine sand-sized peloi-
dal grains and occasionally skeletal grains,
hard, grain supported, sedimentary structures
such as cross lamination and parallel lamina-
tion are commonly observed, occasionally mas-
sive, stylolites and fractures are present, biotur-
bated in part, no visible porosity.

Figure 13. Core photos show nodular grain-
stone on white light (4A) and UV light (4B). This
lithofacies is characterized by light olive gray,
light greenish gray, yellowish gray, white, very
fine to medium sand-sized peloidal and skele-
tal grains, hard, grain supported, parallel lami-
nation and ?mud wispy laminated are com-
monly observed, stylolites are common, frac-
tures are typically associated with the nodules,
no visible porosity.

Figure 14. Core photos show bioturbated
packstone-grainstone on white light (5A) and
UV light (5B). This lithofacies is characterized
by light to medium gray, white, yellowish gray,
silt to very fine sand-sized peloidal grains,
hard, grain supported, abundant bioturbation
(mm to cm scale), blotchy texture, stylolites
are moderate, ?faint cross bedding is rare, no
visible porosity.

Figure 15. Core photos show bioturbated mud-
stone-wackestone on white light (6A) and UV
light (6B). This lithofacies is characterized by
grayish black, faint-weakly laminated, millime-
ter-sized bioturbations, hard, peloidal, glauco-
nite, and altered skeletal grains such as spic-
ules, ?brachiopods, and shell fragments are oc-
casionally present, no visible porosity.
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6. Future Works

Enhanced reservoir characterization is critical for continuous development of Mississippian limestone reservoirs of the Mid-continent.
These reservoirs provide a great opportunity to test the concept of statistical measures of petrophysical heterogeneity for rock typing in
an unconventional carbonate reservoir.

This research is in the early stages of designing the investigation, allowing a statistical analysis of data to test the hypotheses. Prelimi-
nary result of core description suggests that the Mississippian limestone in the study area consists of six (6) lithofacies including
chert-brecciated limestone, nodular grainstone, peloidal laminated packstone-grainstone, skeletal packstone-grainstone, bioturbated
packstone-grainstone, and bioturbated mudstone-wackestone. Shoaling-upward cycle is typically started with bioturbated mud-
stone-wackestone, bioturbated packstone, and capped by bioturbated grainstone or skeletal grainstone. Occasionally, the top section is
characterized by nodular grainstone or peloidal laminated packstone-grainstone or chert-brecciated limestone. Following the core de-
scription, fifty eight (58) thin sections throughout the Mississippian interval in Frieouf 1-7 SWD well will be analyzed using transmitted
light microscope and Scanning Electron Microscope (SEM) for determining pore-types, pore sizes, paragenesis, and mineral composi-
tion. The result will be integrated with routine core analysis and X-Ray Diffraction (XRD) data.

Petrophysical analysis will include:

a. Velocity-deviation log and separation of sonic and density-neutron porosities method - pore-types.
b. Nuclear Magnetic Resonance (NMR) - textural and pore size.

c. Stoneley wave analysis - permeability estimation

d. Multi-mineral analysis - volume of minerals.

e. Heterogeneity log - fluid flow units, ?rock typing.

In summary, the complementary attribute of each log and techniques will be used to evaluate this complex unconventional carbonate
reservoir. Previous work has proven that Heterogeneity logs can be used to identify fluid flow zones in carbonate reservoirs. Therefore,
applications of heterogeneity logs to better constrain fluid flow units and to improve rock typing are expected to better illuminate issues
related to reservoir characterization of unconventional carbonate reservoirs.
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Figure 16. Porosity-Klinkenberg Permeability
crossplot for all rock types in Frieouf 1-7 SWD
well. The porosity values vary from 0.4 - 24.3 %
while permeability values range from 0.0001 -
70.3 mD. Note that most of the permeability
values are below 0.01 mD.

Figure 17. Core - NMR T2 Total Porosity-
crossplot for all rock types in Frieouf 1-7 SWD
well. Note that the data are scattered and ob-
taining a relationship between core and
well-log data is very challenging. Integration
of pore typing and “Heterogeneity log” for
flow units is expected to solve this issue.

Figure 18.Typical well-logs available for this research including Spontaneous Potential (SP), Gamma Ray (GR), Resistivity, Density,
Neutron porosity, photoelectric effect (PE), and sonic log. Several wells have spectral gamma ray, Nuclear Magnetic Resonance
(NMR) and sonic log with compressional, shear, and stoneley travel times. Three (3) wells have routine core analysis data such as
porosity, permeability, grain density, fluid saturation, and XRD data.
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