Drainage Systems in Rift Basins: Implications for Reservoir Quality*

Stephen Schwarz¹ and Lesli Wood²

Search and Discovery Article #30477 (2016)**
Posted December 5, 2016

*Adapted from oral presentation given at AAPG 2016 International Conference and Exhibition, Cancun, Mexico, September 6-9, 2016
See similar article Search and Discovery Article #30465 (2016)
**Datapages © 2016 Serial rights given by author. For all other rights contact author directly.

¹Ecology and Geological Engineering, Colorado School of Mines, Golden, Colorado, United States (stschwar@mines.edu)
²Ecology and Geological Engineering, Colorado School of Mines, Golden, Colorado, United States

Abstract

Ancient and modern rift basins can be found on every continent of the world and account for 31% of giant fields discovered (Mann et al., 2003) with over 620,000 (MMBOE) of estimated recoverable hydrocarbons worldwide. New rift plays are just being discovered as we explore beneath salt deposits and penetrate deeper continental margin strata. The biggest challenge in these basins is understanding reservoir location, quality, and extent. Axial- and marginal-sourced rivers provide very different sediments to the system and have significant geomorphologic differences. The architecture of rift systems varies dramatically from those located within continental versus coastal/marine environments (Gawthorpe and Leeder, 2000). A three phase study of rift drainages was undertaken to document these differences and quantify the various morphologies of drainage that characterize rifts. A literature and imagery review of ancient and modern rift drainage systems was undertaken with the focus on ancient systems being issues and challenges to producing discovered, developed, and undeveloped hydrocarbon in rift system reservoirs. In the second phase of this work, a study of the morphology of a modern rift setting in East Africa using ArcGIS and satellite imagery allowed mapping and quantification of rift drainage morphologic characteristics, such as: drainage architecture, rift size, channel size and flow characteristics and the overall drainage nature versus catchment area. Phase 3 of this study focuses on applying the criteria and knowledge built in Phases 1 and 2 to improve prediction of drainage nature and subsequent reservoir distribution and development in a high resolution 3D seismic survey in the Dampier Sub-basin off the NW coast of Australia. Quantitative seismic geomorphological techniques have been employed to assess the morphology, flow character, and drainage size of this paleo-rift system toward a better understanding of reservoir distribution and risk.

References Cited

Drainage Systems in Rift Basins: Implications for Reservoir Quality

Stephen Schwarz and Lesli Wood
Agenda

- Study Motivation
- Introduction to Rift Basins
- Geologic and Stratigraphic Background of the Dampier Sub-basin
- Seismic Geomorphology and Basin Fill
- Conclusions
Study Motivation

- Rift Basins account for 31% of discovered giant oil and gas fields (Mann et al., 2003)
- Continuing exploration into deeper areas demands ways to de-risk (Ex. Tupi discovery offshore Brazil)
What is a Rift Basin?

- Basin that has undergone crustal extension and passed through five sedimentary evolution cycles (Prosser, 1993):
 - Pre-rift (S1): everything deposited before active fault movement
 - Syn-rift (S2-S4): everything deposited during active faulting
 - Post-rift (S5): everything deposited after faulting has ceased

- Syn-rift stage comprises three main divisions:
 - Rift Initiation (S2)
 - Rift Climax (S3)
 - Rift waning stage (S4: Immediate Post-Rift (Prosser, 1993))

(Doust, 2015)
Study Location

Indian Ocean
Western Australia

100 km

3D Seismic

Barrow Island

Dampier

Fortescue River
- Approximately 2284 km² (882 mi²) of seismic coverage
- Ajax-1: targeted and penetrates syn-rift sediments not on the rift shoulder
- Limited well coverage, as would be found in an exploration type project
Jurassic Syn-rift Stratigraphy of the Dampier Sub-Basin

S1: Pre-rift
S2: Rift Initiation
S3: Rift Climax
S4: Immediate Post-rift

(Geoscience Australia, 2010)
Seismic Mapped Horizons from Stratigraphy

- Longley et al. (2002) first put together a regional play interval (RPI) stratigraphic naming convention based on seismic surfaces, well data, and biostratigraphy.
- Marshall and Lang (2013) further refined this sequence stratigraphic framework.

(Geoscience Australia, 2010)

(Marshall and Lang, 2013)
Seismic Mapped Horizons from RPI

<table>
<thead>
<tr>
<th>Horizon Name</th>
<th>Relative Age (Marshall and Lang, 2013)</th>
<th>Formation Top (Marshall and Lang, 2013)</th>
<th>Phase</th>
<th>Surface Type (Marshall and Lang, 2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K10</td>
<td>Top Jurassic</td>
<td>Dingo Claystone/Angel Formation</td>
<td>Peak</td>
<td>Maximum Flooding Surface</td>
</tr>
<tr>
<td>J50</td>
<td>Late Jurassic (Tithonian)</td>
<td>Eliassen Formation</td>
<td>Peak</td>
<td>Sequence Boundary</td>
</tr>
<tr>
<td>J47</td>
<td>Late Jurassic (Oxfordian)</td>
<td>Oxfordian Sequence Boundary</td>
<td>Peak</td>
<td>Sequence Boundary</td>
</tr>
<tr>
<td>J40</td>
<td>Late Jurassic (Oxfordian)</td>
<td>Calypso Formation</td>
<td>Trough</td>
<td>Sequence Boundary</td>
</tr>
<tr>
<td>J30</td>
<td>Middle Jurassic (Callovian)</td>
<td>Athol Formation/Legendre Formation</td>
<td>Peak</td>
<td>Transgressive Flooding Surface</td>
</tr>
<tr>
<td>J20</td>
<td>Early Jurassic (Sinemurian)</td>
<td>North Rankin Formation</td>
<td>Peak</td>
<td>Sequence Boundary</td>
</tr>
</tbody>
</table>

(Marshall and Lang, 2013)
Seismic 3-D Surveys

- A-A': parallel to rift axis
- B-B': orthogonal to rift axis
- C-C': orthogonal to rift axis, included Ajax-1 well
Cross-section A-A’

Legendre Delta Complex

Two-way Travel Time (seconds)
Cross-Section B-B’

Two-way Travel Time (seconds)

Legendre Delta Complex

J20
J30
J40
J50

5 km

X-line 17324 (survey g9pan99)
Cross-section C-C’

Two-way Travel Time (seconds)

X-line 8220 (survey g9pan1e)
Integrated Surface Interpretation Workflow

K10 Surface Example

Interpret Horizon

Create Surface

Smooth

(7 iterations, 1 Filter Width)

Isopachs

Flatten & Realize Cube
Faults within Dampier Sub-basin
J 20 Isopach: S2 Rift Initiation

Thickness Time (ms)

- 1700
- 400

25 km
J20 Isopach: S2 Rift Initiation

Thickness Time (ms)

- 1700
- 400

25 km

J20
J20 Isopach: S2 Rift Initiation

Thickness Time (ms)

- 1700
- 400

25 km
J20 Isopach: S2 Rift Initiation

Thickness Time (ms)

- 1700
- 400

25 km
J20 Isopach: S2 Rift Initiation

Thickness Time (ms)

- 1700
- 400

25 km
J20 Isopach: S2 Rift Initiation

Thickness Time (ms)

- 1700
- 400

25 km
J30 Isopach: S3 Rift Climax

Thickness Time (ms)

25 km

J30
J30 Horizon Slice

Horizon Slice 74 ms above J30 Surface (g9pan1e survey)
J30 Horizon Slice

Horizon Slice 74 ms above J30 Surface (g9pan1e survey)
J40 Isopach: S3 Rift Climax

Thickness Time (ms)

0 - 800

25 km
J40 Isopach: S3 Rift Climax

Thickness Time (ms)

0

800

25 km

J40
Submarine fans above J40 horizon

Horizon Slice 29 ms above J40 Surface (g9pan1e survey)
J50 Isopach: S4 Immediate Post-Rift

Thicknes Time (ms)

25 km

300
J50 Isopach: S4 Immediate Post-Rift
Conclusions

- An integrated surface interpretation workflow allows for the use of a suite of information to inform on the spatial and temporal deposition of potential reservoirs.

- Depocenter location in the Dampier Sub-basin changed through time:
 - Not always located in modern structural “basin center”
 - Fault movement was asymmetrical and fault initiation (S2) extension is taken up by multiple faults until the border fault network links up and takes over the majority of extensional slip.
 - Footwall uplift restricts transverse inputs, leading to development of major axial sediment deposition for much of rift basin evolution.
 - Transverse sediment inputs are most abundant during rift climax.
References