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Abstract

A 2D and 3D seismic-based structural analysis of the Ashmore Platform in NW Australia is aiming to unravel the tectonophysical processes
resulting from an early-stage foreland basin deformation in the Timor Sea region. A re-evaluation of lithospheric flexural models proposed for
this region and a comparison against the observed fault pattern reveal various differences. The study area provides an exceptional opportunity
to examine the early-stage development of the foreland basin between the colliding Australian continental margin and the Banda arc. The
Timor region's abundant normal faulting within a remotely convergent plate-margin setting has been a debated subject with numerous studies
devoted to explain this issue. 2D elastic half-beam models of and simple bending elastic beam models from evidence that bending of the
Australian lithosphere is a key mechanism responsible for the current tectonic development of the Timor Sea. This seismic-based tectonic study
constrains these numerical models inferring a combination of mechanisms to explain the modern extensional faulting of the study area. This
study integrates interpretations from 2D and 3D seismic-reflection data with standard wireline logs of two wells to subdivide the subsurface of
the study area into five seismic units, corresponding to a Paleozoic basement, thick Mesozoic clastic and carbonate sequences and a topmost
Cenozoic succession of predominantly carbonate rocks. This sedimentary succession is deformed by numerous normal faults, of which 165
were mapped in 3D, particularly focusing on the displacement of the recent to sub-recent sedimentary cover. The modern structural styles
encountered in the study area resulted in the differentiation of three normal-fault sets. This seismic-based tectonic analysis ultimately ground
truths theoretical models of lithospheric flexure, highlighting the importance of combining modelling studies with observational field-based
constraints.
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1 INTRODUCTION

2 GEOLOGICAL SETTING 4 INTEGRATION OF SEISMIC AND WELL INTERPRETATIONS

Key events in the evolution of North West Shelf Australia (NWS)

A 2D and 3D seismic-based structural analysis of the The study area is situated offshore on the Timor Sea region of the Australian North West Shelf. The « Extension on NW Australia began in the Late Devonian in response to the break-up of Wireline-log interpretations were carried out to gain lithological information about the subsurface.
Ashmore Platform in NW Australia is aiming to unravel Timor Sea region has a complex evolution history, involving the interaction of the Banda Arc, a volcanic Gondwana (Baillie et al., 1994). During the early Permian, extension led to the creation From the sesimic data interpretation the seafloor (H1 )and five horizons (H2, H3, H4, H5 and H6) were
the tectonophysical processes resulting from an early- and non-volcanic arc of islands (Hall and Wilson, 2000); a network of long-lived sedimentary basins, such of a wide intracontinental rift . A thick Triassic-Jurassic sedimentary sequence was mapped along the entire area. Based on the horizon interpretation the subsurface is subdivided into
stage foreland basin deformation in the Timor Sea as the Browse and Bonaparte Basin (Harrowfield and Keep, 2005); as well as highly structured blocks: accommodated by this wide depocenter (Etheridge and O‘Brien, 1994). five seismic units: U1, U2, U3, U4 and acoustic basement; which correspond to a Paleozoic basement,
region. Ashmore and Sahul platforms (Geoscience Australia, 2011). thick Mesozoic clastic and carbonate sequences and a topmost Cenozoic succession of predominantly
e During the Jurassic-Early Cretaceous, seafloor spreading at the rift axis started and carbonate rocks.
A re-evaluation of lithospheric flexural models proposed the present-day passive margin of NW Australia developed (Baillie et al., 1994; Longeley
for this region (i.e. Londofio and Lorenzo 2004; Langhi 250000 500000 750000 A 1000000 1250000 et al., 2002). Tectonism had ceased by the Aptian, after which time the NWS was i Cﬁf?Sh'Z\l‘_":e R%g” :q:m LT WDOW ons |67 T cﬁLfSﬁiah:;:hoaé?”E‘\/OD] o ——
et al. 2011) and a comparison against the observed fault NS Thrust® ~ ¥ %Wetar Thrust Wéta’?‘ B—— blanketed by a thick passive margin succession comprising siliciclastic and carbonate ulles E =
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\BROWSE Subbasin 2500 IeiiiineperemensEinEE, line b
3 L\ % R g — ustralian crystalline basement

- 'Australian' land surface o= ® L. . . . L
! £ ] ) Seismic Unit | Boundaries Geological characterization
I:I Auatiali " tal shelf E Cambnapf;Ca:jpomf?rous
ustrallan continental she 2| Asian mantle re-rift sediments Australian mantle .
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Australian oceanic (H1) depicted by the present-day seafloor morphology.
1 lithosphere Base: H2
Tectonic setting of North-West Australia 100 ) ) ) . ) - ) .
4 . i i . . i It is mainly composed of Miocene carbonates and calcarenites as interpreted from the wireline logs signature. This
(after Harrowfield and Keep, 2005). Regional crustal-scale transe.ct illustrating the early-stage collision of the Australian Plate with the B Top: H2 sequence was presumably deposited during a shallow marine environment, slightly influenced by currents from the coast
Banda Arc (after Hall and Wilson, 2000; Moreley et.al.,2001). Base: H3 transporting terrigenous material, as proposed by B.0.C. (1979). Relatively thin (400 ms) unit; an abrupt change in the
sedimentation thickness is recorded in the southern area, possibly due to the reef growth.
The Timor region's abundant normal faulting within a
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) o - . . . . . i ua Top: H4 Gorter et al. (2002) propose that the Cretaceous depositional interval, in the Timor Sea region, initiated with a
development of the foreland basin between the CO”Idlng \ ' » . i | > Platform were analyzed using open—flle seismic reflection data: 68 MCS 2D lines Base: H5 transgressive environment with shallow marine deposition, followed by a thermal subsidence phase that last throughout
Australian continental margin and the Banda arc. L, RS L=l 7500 from the Browse-98 2D offshore seismic survey (BR98) and 9,467 km’ from the the rest of the Cretaceous.
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. . . . . ' - . North Browse TQ3D seismic sUrvey. The wireline information of two wells: The acoustic basement sub-unit comprises a thick Triassic succession of mainly sandstones and siltstones, carbonates also
This seismic-based tectonic study constrains some of the 250000 500000 750000 1000000 1250000 Ashmore Reef No.1 (AR) and Sahul Shoals No.1 (SH) was available for this study; ) Top: H5 occur as thin bands, deposited presumably in a shallow marine to fluvio-deltaic environment.It is tectonically
proposed numerical models inferring a combination of the wells were drilled in 1968 and 1970’ respectively. The well information was Acoustic Base:.H6 characterized by a series (.)f horst anc.l ghatfen structures a.s well as tllte.d fault blocksformed during Ia.te MlddlgjuraSS|c
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of the study area Gebco bathymetry. Inset shows location of the study area. and Petroleum from the Government of Western Australia indicate the beginning of the continental breakup (Longley et.al., 2002).
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5 LITHOSPHERIC FLEXURE MODELS 6 OBSERVED FAULT PATTERN

Different models have been proposed to justify the abundant normal faulting within a remotely convergent The topmost recent sedimentary cover is deformed by numerous normal faults, of which 165 were mapped in 3D. A detailed structural analysis of the recent to sub-recent fault development in the study area resulted in the
plate-margin setting. differentiation of three normal-fault sets:

e FAULT SET 1 cut the seafloor, indicating that this fault population has been recently active and thus
450000 500000 550000 600000 650000 reflect the recent stress state. Two sub-sets of currently active faults are identified:

Londofio and Lorenzo (2004) used simple bending elastic beam models and proposed that extensional stresses,
created during the bending of the north-western edge of the Australian plate under the load of the Banda

OrOg?ny_accret'fmay prls.m, could have triggered the Neogene reactivation and/or the new growth of normal Faults from sub-set 1a are NE striking and their location coincides with the Australian present-day shelf-
faulting in the Timor region. slope break; this fault sub-set is interpreted to have developed due to the gravitational collapse of the
o : Fault Sub-set 1a present-day upper continental slope.
By integrating the structural analysis with 2D elastic half-beam models and regional schematic plate =
reconstructions, Langhi et al. (2011) argued that lithospheric flexure of the Australian plate margin, due to 0 *Faults of sub-set 1b are ENE striking; these faults are interpreted as flexure-induced normal faults that
thrust loading around the Timor Island, could explain the Neogene structural style in the Timor region. 0 represgnt the structural response to bgndmg :.at the currgnt IocatlorT of the modern forebulge hlnge:
According to the structural interpretations, this study evidences a different present-day forebulge hinge
location than Langhi et al. (2011).
Line Trace BR98-193
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| 1‘ | | i | *FAULT SET 2 trends NE-SW with shallow to moderate dips. These faults terminate with their upper tip
NW SE 8 between the seafloor (horizon H1) and the underlying horizon H2, they can be observed in the central part
8 of the study area. This fault set is most likely associated to the flexure of the Australian plate, and their
E subsurface location at distance to fault set 1 evidences a landward migration of the flexural forebulge zone.
o
. the oldest faults interpreted in this study are restricted to the northeastern area. These are
extensional, NE striking faults that dip shallowly towards the NW and SE. These faults terminate
downwards within the acoustic basement, and upward within horizon H2. This fault set can be interpreted
o to have formed in response to the Australian lithospheric flexure. Their location, in the northern study
8 area, confirms that the normal faulting front moved southwards across the Australian plate.
o
0
©
0
Time (ms) ¢ This seismic-based tectonic analysis constraints theoretical models of lithospheric flexure,
Line Trace BR98-193 S 0 highlighting the importance of combining modelling studies with field-based observations.
BR98-221 BR98-219 BR98-218 BR98-217C BR98-216 BR98-215 8
| | | | | | - ~ . . .
NW | \ | \ \ | SE ° 4 2D elastic half-beam models of Londofio and Lorenzo (2004) and simple bending elastic
-500 beam models from Langhi et. al. (2011) evidence that bending of the Australian lithosphere is a
key mechanism responsible for the current tectonic development of the Timor Sea.
& 1000 ¢ Based on structural interpretations, this study evidences that flexure-induced normal faulting
S ) N began to affect the Australian plate in the northeast and propagated southwestward trough
3 time, contrasting with the eastward stress propagation proposed by Londofio and Lorenzo
To} . . . .
15e) (2004); as well as a different present-day forebulge hinge location than Langhi et. al. (2011).
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