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Abstract

The stress regime in the Illinois Basin was investigated to assess how the rock column might respond to the injection of fluids, including co-
produced formation brines and supercritical CO,. This response is a concern as injection practices could increase pore pressure and potentially
induce seismicity. Data were collected to determine the magnitude and orientation of a three-component stress field: vertical (Sv), minimum
(Sh), and maximum (SH) horizontal stresses. Sv was evaluated with a six-layer lithostratigraphic column. A two-layer pressure-depth Sv model
for the central portion of the basin and a single pressure gradient model for the surrounding region were generated. In the central portion of the
basin, the Sv gradient is 1.11 psi/ft to a depth of 7000 ft, followed by a gradient of 1.20 psi/ft below 7,000 ft. In the area surrounding the deep
basin, the Sv gradient was calculated as 1.13 psi/ft. Sh was evaluated from multiple data sources, primarily fracture closure values from either
hydraulic fracture records or extended leak-off tests. Sh gradient calculations ranged from 1.07-1.21 psi/ft. The Sh values for the basal clastic
units that directly overlie the crystalline basement complex are lower than those for units in the overlying horizons. SH was based on a
critically stressed model yielding values between 1.77 to 2.65 psi/ft, which is significantly greater than the gradient values for Sv or Sh. Stress
orientation data for the Illinois Basin were collected from multiple sources. The orientation of the principal stress, SH, across the study area
relatively uniform in strike at approximately N 60 E but has marked deviations. These deviations result from localized structural discontinuities
in the crust.
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* Primary Focus: Investigate and model the state of
the stress field that exists in the MGSC region

* Orientation of three principle stresses
* Magnitudes of these forces

* Primary Research Question:

* How is the stress field oriented throughout the IB and
surrounding region?

* What are the stress (pressure/depth) gradients in the
region?

* How much can the pore pressure be enhanced, via
injection, before faults are activated?
* Results are of value for:

* Seal and reservoir integrity evaluations, seismic risk
assessment, and storage efficiency estimates

* Regulators of subsurface injection



Stress Field

* Stress files characterized by three mutually
orthogonal tensors, denoted as 61, o 2 and 63

* This configuration can be situated anywhere in
space but, assuming one is vertical, the others
become horizontal, denoted as S vs. o

* Vertical stress =S,
* Maximum (“Principle”) horizontal stress =S,

* Minimum horizontal stress =S,



Reverse Fault Regime

Sv = G3
Strike-slip Fault Regime )\

Normal Fault Regime /k
S, %o z
)\ | o Sy = 0y
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Sy = o, UINRE Y

Presenter’s notes: Relationships between principle stresses (Sv, SH and Sh) and fault styles. Modified from Engelder (1993).



Coulomb Failure in Poroelastic Material

* Occurs when the ratio of the shear stress to the normal stress
T/ exceeds a critical value (e.g. 3/1)

* The critical value is influenced by , the friction of the fault
surface (function of lithology)

* The ratio of t/c is determined by the values of S,, (1) and S,
(02), the angle of the fault 3 and, the pore pressure p
|

* When all other influences are held

(a) N
constant, increasing pore pressure \. . o
. . . \ l Oh
increases the ration of 1/c— failure ‘x\/ :
# Q*’A.\.\‘\ h
P
N

Bt = Critical angle of faulting
P...: = Critical pore pressure T b“
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Methods

Determination of S,

e Simplified the stratigraphic sequence into six layers
based on generalized lithofacies of rock units

* Examined a series of density logs to determine
average density of layers across the region

* Mapped their spatial distribution and then
determined S, gradient in two areas — basin margin
and basin deep



Stratigraphy
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This chart was modified from: Indiana Geological Survey,
Poster 6 (2006), by T. Thompson and K. Sowder.
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Example of log

used to
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average density
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Well id#150128. Knox County, Indiana.

Rhob (Ave)

3 [giem’ 2

Gamma Ray E Caliper Rhob Rhob (Fixed)

0 wunl 300| § |5 linches) 20||3 [gem] 2|3 fglam] 2
[a]

T
w
=

L

=
% - 100
=1
Unit 6: e
. =_____ |
Pennsylvanian g - 200 4 i
= ™
=
4} 300
Unit 5: % 3507
Upper =
Mississippian | =% -400H e
N —
L 450 -
- 500 ‘
- 550
Unit 4: 6004
Lower ‘ 650
Mississippian

- 700

- 750 4

- 800

Uit 3:NAS =1 8501 S
Unit 2: Lower Pz.
Carbonates - 900
Eau Claire Fm. [0

100



Unit 1: Clastics Unit 2: Lower Paleozoic Carbonates

A

Unit 4: Lower Mississippian

N~ —

A

| ER Bt
| ERCEE
| EEFEEN
i
227
Elier-2m
[lzes.2e8
[CJie-am

g reTeTew.)
caa o 2512

e \ e

Presenter’s notes: Regional density variation for major lithostratigraphic units, 1) (Cambrian clastics), 2) (Ordovician-early Devonian carbonates),
3) (late Devonian clastics) and 5) (late Mississippian clastics). The densest unit on the figure is the Ordovician-early Devonian carbonates. Cambrian
clastics, values from 2.5 to 2.68 sg.
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Presenter’s notes: (a) S,/depth profile calculated for 22 Indiana, Illinois and Kentucky wells with TD< 2130 meters (7000 feet). The green line,

25.6 MPa/km (1.13 psi/foot), represents the combined S, profiles from individual wells. The insert map shows the location of the wells represented
in this plot. A series of S, values from four locations in Northern Illinois are also posted on this plot and are in agreement with the work from this
study; (b) S, profiles calculated for Indiana, Illinois and Kentucky deep basin wells with TD > 2130 meters (7000 feet). The green line is a two-layer
S, model with slope of 25.1 MPa/km (1.11 psi/foot) to 2130 meters and then a slope of 27.1 MPa/km (1.20 psi/foot) to total depth. In both plots, the

orange line represents the frequently assumed gradient of 22.6 MPa/km (1 psi/foot). 1 Mpa = 145 psi.




Determination of S,

* Based on the strength of the formations

 Strength came from:

* Formation integrity tests (FIT)
* Leak off tests (LOT)
* Fracture closure values (hydraulic fracturing)



ldealized Pump Test
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Presenter’s notes: Example of hydraulic fracture stimulation record used to determine Sy. The fracture closure pressure (Sy) is determined by

interpolating two portions of the post fracture propagation pressure curve (red). The pink arrow indicates the intersection of the two rates of pressure
decline after pumping has stopped.
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Determination of S,

* S,, was calculated based on the values of S,
* Based on a critically stressed crustal model
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S, Results

* Central portion of the basin:

e Shallower portion of the section 0-7,000’, gradient is
1.11 psi/foot

e >7,000’ gradient is 1.20 psi/foot

* Area surrounding the deep basin, the gradient is
1.13 psi/foot

*The calculated Sv values are greater than some Sv values
employed in earlier lllinois Basin studies.




Sy, Results

* Using various sources of information, values of S,
gradients range from 1.07- 1.21 psi/foot

* Because these values are very close to the values
forS,(1.11-1.20 psi/foot), fault mechanisms may
change from predominantly strike slip (S, >S, > S,)
to reverse/thrust (S, >S, >S,) in some local
circumstances.

* S, values for the basal clastic units that directly
overlie the crystalline basement complex (Eau
Claire/Mount Simon Sandstone) are lower than
those of overlying sedimentary units



S, Results

* S, gradient values were calculated to be between
1.77 to 2.65 psi/foot

* S, is modeled based on a critically-stressed model.

* As these values are derived from other calculated
values, which themselves have some degrees of
uncertainty, values for S, are assumed to be
significantly uncertain



SH Orientation

* S, is interpreted to be the maximum stress (o)
based on fracture patterns in the basin

* Horizontal orientation data compiled from multiple
sources

* Relatively uniform in strike at approximately N 60 E

* Localized deviations could be the result of localized
structural discontinuities in the crust

* These areas include the Wabash Valley Fault Zone, the
Rough Creek Graben and the New Madrid Fault Zone.
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map and multiple sources. The Illinois Basin is an oval-shaped intracratonic basin that lies in the east central portion of the North American craton.
Several prominent structural features are found within and directly adjoining the basin. These features include the Wabash Valley Fault System,
which is a northeast-southwest trending set of dominantly normal and transtensional faults located on the Indiana-Illinois border, adjoining the
deepest portion of the basin. The Wabash Valley fault system is truncated by the Rough Creek-Pennyrile-Shawneetown Fault System. The truncating
faults strike east-west, are strike-slip in nature and span the southern portion of the basin. South of this system is a complex array of northeast-
southwest trending faults located in the Fluorspar District. The steepest dips of strata in the basin are found in close proximity to these major fault
systems and along the southwest margin of the basin where the Ozark Uplift (and Ste. Genevieve fault System) bound the basin.



Focal Mechanism Inversion

* Inverted the focal mechanisms for earthquakes in
the region to generate a gridded array of maximum
horizontal stress (SH) orientations

e Contrasted this result with other sources of SH
orientation information

* Highlighted areas where local stress field deviated
from regional trend (N 60 E)



Inversion Results Based on Focal
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Maximum Horizontal Stress Orientation Incorporating S,
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Summary

* Investigation yielded new ranges of values for S, S,
and S,

* Results can help inform policy/management
decisions on magnitude of pressures that can be
safely tolerated by the rocks of the basin

* Information can help inform decision makers of
regions where additional stress (from elevated pore
pressure) could potentially activate faults at lower
pressures

* Theory-zero tolerance (P, =0) or, modeling of limits

based on empirical data—-management (P, 10-100 psi)



Future Work

* Evaluate the orientations of the major fault systems
in the region to assess their degree of criticality
relative to the regional S,, orientation

* Investigate the magnitude and orientation of the
fracture system in the basement complex

* Model pressure changes on a basin scale in given
saline aquifers/evaluate the role of a bottom seal

e Communicate results to interested stakeholders





