Enhanced Reservoir Characterization Using Continuous Mineral Composition Logs* Ralf R. Haese¹, Scott Ooi³, Grant Jiang², and Jay R. Black² Search and Discovery Article #80502 (2015)** Posted December 28, 2015 *Adapted from oral presentation given at AAPG/SEG International Conference & Exhibition, Melbourne, Australia, September 13-16, 2015 ¹CO2CRC Ltd. & Peter Cook Centre for CCS Research, University of Melbourne, Melbourne, VIC, Australia (ralf.haese@unimelb.edu.au) #### **Abstract** Reservoir characterization is critical for the exploration and evaluation of oil and gas resources, but also in the context of geological carbon storage. Interbedded baffles play a key role in controlling the CO₂ plume dynamics and geometry and, as a consequence, residual CO₂ trapping capacity can be greatly enhanced due to the presence of baffles. Mineral trapping capacity is also enhanced where CO₂-rich fluids are in contact and react with baffles containing Ca-, Mg-, and Fe-rich silicate minerals leading to the precipitation of carbonates. Importantly, interbedded baffles of a few centimeters are sufficient to affect CO₂ injection and storage conditions as described. In this study, we explore the merit of HyloggerTM data as a complementary approach to traditional reservoir characterisation. The recent development of the HyloggerTM –3 technology with the thermal infrared (TIR) sensor allows the rapid and continuous semiquantitative determination of common minerals in cores and chips from siliciclastic reservoirs at centimeter resolution. As a case study, data from sediment cores from a recent CO₂ storage exploration program in the Darling Basin (New South Wales, Australia) are presented. HyloggerTM data are used in two distinct ways. Firstly, the percentage of mineral groups (framework, carbonate, and clay minerals) is calculated based on HyloggerTM data and compared to XRD results on discrete samples. Secondly, the distribution of clay mineral rich intervals is compared to interpreted shales based on wireline log data. We generally found very good agreement between the relative abundance of framework, carbonate, and clay minerals when HyloggerTM TIR data were compared to traditional XRD data. The advantage of the HyloggerTM data is it provides a high (centimeter-scale) resolution record of litho-types, while the complementary XRD data can be used to validate the accuracy of the mineral determination by HyloggerTM. The comparison of wireline log interpreted shale intervals with clay-mineral rich intervals based on Hylogger™ data mostly showed a good correlation. However, two wireline log shale intervals were found to be composed of almost entirely quartz based on HyloggerTM data. We suspect relatively high gamma ray emissions from very low concentrations of minerals such as K-containing muscovite or kaolinite may have led to the false wireline log interpretation. Spectral gamma ray analysis is currently planned to further explain the observed discrepancy. ^{**}Datapages © 2015 Serial rights given by author. For all other rights contact author directly. ²CO2CRC Ltd. & Peter Cook Centre for CCS Research, University of Melbourne, Melbourne, VIC, Australia ³School of Earth Sciences, University of Melbourne, Melbourne, VIC, Australia #### **References Cited** Haese, R.R., and M. Watson., 2014, Comparison of the Mineral Trapping Capacity in Three Reservoirs with Variable Mineral Compositions under CO_2 Saturated Conditions: Energy Procedia, v. 63, p. 5479-5482. doi:10.1016/j.egypro.2014.11.579 Higgs, K.E., R.H. Funnell, and A.G. Reyes, 2013, Changes in Reservoir Heterogeneity and Quality as a Response to High Partial Pressures of CO₂ in a Gas Reservoir, New Zealand: Marine and Petroleum Geology, v. 48/12, p. 293-322. doi:10.1016/j.marpetgeo.2013.08.005 # Enhanced reservoir characterisation using continuous mineral composition logs Ralf R. Haese, Scott Ooi, Grant Jiang, Jay R. Black Peter Cook Centre for CCS Research, The University of Melbourne ## Questions to be addressed relating to CO₂ mineralisation: - 1. What do we know & what we not know about fluid rock reactions? - 2. What have we learned from natural analogues? - 3. How can continuous mineral composition logs support realistic predictions of CO₂ mineralisation? ## Differences in mineral reactivity in reservoir rocks # Primary mineral composition | | Pretty
Hill Fm. | Takinoue
Fm. | |-------------------|--------------------|-----------------| | Quartz | 60 | 6 | | Ca-Na-plagioclase | | 38 | | K-feldspar | 2 | | | Albite | 19 | | | Mg-Fe-pyroxene | | 23 | | Fe-Chlorite | 10 | 12 | | Calcite | 5 | 1 | | Kaolinite | 1 | 22 | | Illite | 1 | | Source: Haese and Watson., 2014, Energy Procedia ## Lessons learned from a natural analogue, The Kapuni Field, New Zealand Source: Higgs et al., 2013, Marine and Petroleum Geology ### Processes at the interface of intraformational baffles and sandstone ### Interface: D_a is large ⇒ high mass conversion rate Damköhler Number, Da = $\frac{Reaction Rate}{Mass Transport Rate}$ # Continuous semiquantitative mineral analysis using the Hylogger™ at Mena Murtee-1 (Darling Basin, NSW) Data acquisition: SWIR/VNIR & TIR sensors at NSW Geological Survey Data processing and interpretation: The University of Melbourne, TIR data analysis using software: TSG HotCore # Definition and distribution of lithotypes based on mineral composition Core 1 Core 3 ative Abundance (%) Relative Abundance (*) | Composition | RGB Triplet | Color | |--|--------------------|-------| | 100% sandstone | [1, 0, 0] | | | 100% mudstone | [0, 1, 0] | | | 100% carbonate | [0, 0, 1] | | | 80% sandstone, 20% calcareous sandstone | [1, 0, 1] | | | 80% sandstone, 20%
mudstone | [1, 0.5, 0] | | | 60% sandstone, 40%
mudstone | [0.75, 1, 0] | | | 65% sandstone, 27%
mudstone, 8% calcareous
sand-/mudstone | [0.81, 0.68, 0.4] | | | 60% sandstone, 25%
nudstone, 15% calcareous
sand-/mudstone | [0.75, 0.63, 0.75] | | ## Correlating wireline log with hyperspectral core logging data ## Correlating wireline log with hyperspectral core logging data ## **Conclusions** Reservoir scale CO₂ mineralisation estimates require reactive – transport modelling. The interfaces between sandstone and intraformational baffles are primary zones of mineralisation. Continuous mineral logs provide important data for the required modelling. ## Government, Industry and Research Partners