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Abstract

Integration of sequence stratigraphy, diagenesis, and geochemistry provides a comprehensive understanding of the nature, distribution, and
connectivity of pores in the hydrocarbon-productive Cretaceous Eagle Ford Formation, South Texas. For this study, samples were gathered
from two wells that contain 1) foraminiferal mudstones with high (up to 8 wt%) total organic carbon (TOC) contents, deposited in the
transgressive system tract (TST) or near the maximum flooding surface (MFS), and 2) limestones with relatively low TOC (<1 to 2 wt%)
contents, deposited during highstands (HST). The Eagle Ford differs in thermal maturity between the wells, with the formation at ‘low’
maturity (Ro ~0.7%) in one and at higher maturity (Ro ~1.2%) in the other.

Early diagenesis in TST/MFS mudstones resulted in precipitation of euhedral pyrite, quartz, and kaolinite, which filled foraminifera tests
(intraparticle pores) and partially filled interparticle pores between detrital grains. In HST limestones, euhedral microsparry calcite precipitated
from recrystallization of abundant foraminifera and coccoliths; interparticle pores remained between calcite crystals. In both lithologies,
bitumen coats all precipitated minerals. Bitumen occludes pores in mudstones, whereas it lines pores and only locally occludes them in
limestones. Subsequent porosity development in the bitumen (limited connectivity) was observed only in the high-maturity well and principally
in mudstones. Based on laboratory measurements and inferred from focused-ion-beam scanning electron microscopy, good connectivity exists
between interparticle pores in limestones, which is consistent with higher hydrocarbon yield (S1 peak in RockEval analyses) from limestones
relative to mudstones, and indicates that hydrocarbon storage is significant in limestones.
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Paleogeographic setting, Eagle Ford
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Study well locations
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Sequence stratigraphic framework

Eagle Ford, near Del Rio, TX
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Broadly, two lithologies of interest

Org-rich mudst, TST-MFS, up to 8% TOC, ® = 8-9%, k¢ = 50 nD
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Petrologic goals for porosity studies
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Place inorganic & organic porosity development within a temporal and
thermal framework for lithologies of interest (org-rich mudst & Is)
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Nature of pores, mudstone & limestone
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Both intra- & m‘rer'par"rucle pores

» Organic pores abundant, in some

samples
Fractures filled with calcite and/or
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Organic porosity in some samples...

"5 LIMESTONE:

Most pores are interparticle
between authigenic calcite (C) or
pyrite (P)

Fractures filled with calcite and/or
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Organic pores observed, in some
samples




Organic porosity, function of thermal maturity

HIST lizstonzs TST/MFS organic mudstones

Eagle Ford Ro ~0.7%:

Organic pores minimal
or lacking entirely
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Eagle Ford Ro ~1.2%:

Organic pores very
well developed

.‘ ‘\ }
12/6/2012 HV pressure| det | mag O
3:10:47 PM [15.00 kV| 60 Pa |LFD |14 000 x

12/6/2012 HV pressure | def |'ma | 9
4:20:58 PM [15.00 kV| 60 Pa | --- |26 000 x




Nature of the pore-filling organic material

~ Organic material in limestones:

« Coats early diagenetic minerals
'+ Locally occludes remaining pores
i « Can line interparticle pores

. ;’-:’2 ;
i J * ¥ im
'm}" é MAP K

Organic ma‘remal in muds‘rones: i

« Coats early diagenetic minerals
« Occludes pore (intra- & interxtalline)

Organic material post-dates early,
diagenetic minerals, was mobile (fills
pores), & abundant in mudstones but
less so in limestones = migrated
bitumen, now, in part, pyrobitumen’




Timing of events, org-rich TST/MFS mudstones
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Authigenic pyrite (P), quartz (Q), calcite (C),
Kaolinite (K), & 'bitumen'—interparticle cements
_but bitumen less common in Is than mudst

Calcite recrystallized from
biological components
Paragenetic sequence
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Eagle Ford diagenesis summary

Early diagenesis similar in TST/MFS organic-rich mudstones, both cores
Early diagenesis similar in HST limestones, both core

‘Bitumen/pyrobitumen’ present in limestones and mudstones—abundant
in mudstones

Organic porosity development minimal or absent in low maturity (0.7%
Ro) but abundant in high maturity (1.2% Ro)

Organic porosity (secondary ¢) developed in 'bitumen’ (now largely
pyrobitumen) that fills pores remaining after ppt of early-formed
minerals (e.g., kaolinite, calcite, pyrite, etc.)

Organic-rich mudstones = organic porosity & associated storage best
developed and dominates pore types (minor intercrystalline porosity)

Recystallized limestones = intercrystalline porosity & associated
storage best developed and dominates pore types (minor organic
porosity)



Pore type & connectivity a function of lithology

Organic-rich mudstones

TST/MFS organic-rich mdst,
has some pore connectivity,
largely organic porosity/storage:
a function of thermal maturity.
Lower calcite contents result

In more ductile framework.
(50 nD)

HST limestone has good
pore connectivity, largely
interparticle porosity/storage:
not as dependent on thermal
maturity. Rigid framework due
to diagenetic calcite.,

(300 nD)

EXPLANATION
Green = organic material
Blue = interconnected porosity
Red = unconnected porosity




e
Eagle Ford, summary of pore types by lithology "

/'

 Pore types varies by lithology
« OM pores dominate in org-rich mudstones, higher maturities
« Interparticle pores largely in limestones

« Interparticle pores provide best connected porosity/storage

Organic-rich mudstone Recrystallized limestone
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Porosity & storage related to sequence strat

Lithologic (sequence strat) controls on pore types
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From John Guthrie and Randy Mitchell

Storage (geochem) then linked to both sequence strat
& diagenesis
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Influence of lithology on 'brittleness’ & production

Lithologic (sequence strat) controls on TOC & mmer'alogy g
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Limestones more 'fracable’ & provide HC storage




Conclusions

Porosity development—diagenesis (inorganic) & catagenesis (organic)
> both important for HC storage & production
Pore types related to original lithology, function of depo environment

Inorganic (interparticle) pores in HST (interbedded) limestones
o Early diagenesis (calcite recrystallization) led to interparticle porosity
o Overall 'higher' perm in Is due to diagenesis

Organic pores in organic-rich TST/MFS mudstones, thermally mature
o Early diagenesis resulted in authigenic mineral precipitation
o Early catagenesis resulted in occlusion of remaining pores with bitumen

Organic pores developed the pore-filling bitumen (now pyrobitumen)
o Organic porosity (secondary ¢) probably began at >Ro ~1.0%
Moveable HC in both mudstones & limestones

o Both lithologies contribute to production

Reservoir characterization, function of diagenesis & sequence strat
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