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Abstract 

 

Seismic facies analysis is commonly carried out by classifying seismic waveforms based on their shapes in an interval of interest. It is also 

carried out by using different seismic attributes, reducing the dimensionality of the input data volumes using Kohonen's self-organizing maps 

(SOM), and organizing it into clusters on a 2D map. Such methods are computationally fast and inexpensive. However, they have shortcomings 

in that there is no definite criteria for selection of a search radius and the learning rate, as these are parameters dependent on the input data. In 

addition, there is no cost function that is defined and optimized and so usually the method is deficient in providing a measure of confidence that 

could be assigned to the results. Generative topographic mapping (GTM) has been shown to address the shortcomings of the SOM method and 

has been suggested as an alternative to it. GTM analysis does a nonlinear dimension reduction in latent space, and provides probabilistic 

representation of the data.  

 

We demonstrate the application of GTM analysis to a 3D seismic volume from central Alberta, Canada, where we focus on the Mannville 

channels at a depth of 1150 to 1230 m that are filled with interbedded units of shale and sandstone. On the 3D seismic volume, these channels 

show up at a mean time of 1000 ms plus or minus 50 ms. We first generate different seismic attributes and then using the sweetness, GLCM-

energy, GLCM-entropy, GLCM-homogeneity, peak frequency, peak magnitude, coherence and impedance attributes we derive GTM1 and 

GTM2 outputs. These attributes provided the cluster locations along the two axes in the latent space to be used in the crossplotting that follows. 

Breaking the 2D latent space into two components allows us to use modern interactive crossplotting tools. While GTM1 shows the definition of 

the edges very well for the channels, GTM2 exhibits the complete definition of the channels along with their fill in red and blue. We show that 

the performance of GTM analysis is more encouraging than the simplistic waveform classification or the SOM multi-attribute approach. We 

expect that by using constrained GTM analysis with the help of well log data, the facies patterns we have derived using the unconstrained GTM 

method used here would be further tightened and made more distinct. 
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Seismic Facies Analysis 

Facies analysis: classification of subsurface strata into 
                            lithofacies 

Facies characterization of stratigraphic intervals can be used  
 
1. to interpret depositional environments; 

 
2. to develop a sequence-stratigraphic framework for 

understanding production and resource potential. 



Outcrop and Core Facies Analysis 

Facies descriptions from available cores include 

1. lithology 
2. thickness 
3. color 
4. composition 
5. grain and bedding characteristics 
6. nature of the overlying and underlying contacts. 

Such descriptions are available only at the location of the wells. 



Facies descriptions from seismic data include reflector 

1. Amplitude 
2. Phase 
3. Frequency 
4. Continuity 
5. Conformity/Parallelism 
6. Dip and azimuth 
7. Shape/Curvature 

Such descriptions can be continuously mapped across the entire seismic survey 

Seismic attributes provide such measures to the computer 

Seismic Facies Analysis 



Seismic Facies Analysis and Cluster Analysis 

Unsupervised 

1. Kohonen Self Organizing Mapping (SOM)   
2. Generative Topographic Mapping (GTM)  

Supervised 

1. Artificial Neural Networks (ANN) 
2. Support Vector Machines  (SVM) 

This presentation will show that by using interactive crossplotting and 
color definition, one can add supervision to SOM and GTM 



Seismic Facies Analysis and Cluster Analysis 

Kohonen Self Organizing Mapping (SOM)  aims at using the available seismic 
data to recognize seismic facies with reference to the geologic environment. 
 
Geometrical relationship between seismic data or derived seismic attributes  
and the seismic facies is usually non-linear. 
 
Simplistic linear transformation techniques are not applicable in such an 
exercise. 
 
SOM mines through the available seismic attributes and recognizing 
distinctive patterns that preserve the geometrical relationship between the 
data points that could be interpreted as facies. 



Seismic Facies Analysis and Cluster Analysis 

Kohonen Self Organizing Mapping (SOM) 
 
For a 16 sample vertical waveform in an analysis time window, the samples 
are projected into a 1D manifold lying in 16-dimensional space, which is then 
displayed using a 1D color bar. 
 
Attempts have been made to extend such analysis in to 2D or 3D subspace. 
 
Strecker and Uden (2002) made use of seismic attributes such as amplitude 
envelope, bandwidth, impedance, AVO slope and intercept, dip magnitude 
and coherence, and projected them into 2D latent space, and plotted the 
results using a 2D color bar. 
 
Roy et al. (2012) used 3D SOM multiattribute application to generate a 3D 
seismic facies volume. 



Seismic Facies Analysis and Cluster Analysis 

Kohonen Self Organizing Mapping (SOM) is easy to implement and 
computationally inexpensive, but has limitations. 
 
1. There is no theoretical basis for selecting the training radius, 

neighborhood function and learning rate, as these parameters are data-
dependent. (Bishop et al., 1998; Roy, 2013) 
 

2. No cost function is defined that could be iteratively minimized and 
would indicate convergence during training. 
 

3. No probability density is defined that could yield a confidence measure 
in the final results. 



Generative Topographic Mapping 

GTM method begins with an array of grid points on a lower dimensional 
latent space. (Bishop et al., 1998; Roy, 2013) 
 
Each of the grid points are then nonlinearly mapped onto a similar non-
Euclidian curved surface. 
 
Each data vector mapped onto this space is modeled as a suite of probability 
density functions. 
 
We apply GTM to a couple of datasets from Alberta, Canada. 



Principal component analysis 
(Represents the underlying structure in the data, or the directions where there is 

maximum variance) 

(https://georgemdallas.wordpress.com/2013/10/30/principal-component-analysis-4-dummies-eigenvectors-eigenvalues-
and-dimension-reduction/) 



Principal component analysis 

A given set of data points can be decomposed into eigenvectors 
and eigenvalues.   
 
Each eigenvector has a corresponding eigenvalue. 
 
The eigenvector represents the direction, and the eigenvalue 
represents the variance of the data points in that direction. 
 
The eigenvector that has the highest eigenvalue is called the 
principal component. 
 
The number of eigenvectors/eigenvalues is equal to the number 
of dimensions of the data.  A dataset with two attributes would 
have 2 eigenvectors and 2 eigenvalues. 
 



Unsupervised seismic facies map Unsupervised seismic facies map with PCA 

Note that the seismic facies map without PCA does not differentiate the channel facies 
from the flood plain deposits (same red class). It also tends to bias the interpretation 

toward a channel system not affected by the W-E strike-slip fault. On the other hand, the 
PCA seismic facies map differentiates the channel facies (blue class) and clearly highlights 
the effect of the W-E strike-slip fault in a relatively noisy area. Also, note the development 

of the overbank deposits to the east (yellow facies outlined by black dotted line). 

Comparison of maps from a fluvial channel deposit from Natuna Sea, Indonesia 

Coleou et al., 2003) 



Types of Cluster Analysis 

Input Output 

Windowed seismic amplitude 
along a horizon 

Waveform classification 
 

Windowed impedance values 
along a horizon  

Geomechanical stacking patterns 
 

Vectors of attributes at each voxel  Seismic facies analysis 
 



Presenter’s notes: An example of a 2D hyperplane defined by 2 principal components and a more-deformed 2D latent space. In self-organizing maps, one can begin with prototype vectors equally distributed 

within an ellipse lying on the plane defined by principal components. The surface is subsequently deformed, iteration by iteration to more closely approximate the data, but always retaining the lateral spatial 

relationships (lattice) of the original mesh. 
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focus 
area 

1. Upper Mannville comprises 
the Glauconite sandstone that 
traps the hydrocarbons, 
overlain with an undivided 
member of shale/sandstone, 
providing an effective trapping 
mechanism. 
 

2. Incised valley channel 
sandstones of the Glauconite 
unit truncate the Ostracod 
formation as well as the 
regional Glauconite facies. 
 

3. The drilling carried out in the 
area has highlighted 
challenges in the facies 
prediction of a shale vs sand- 
filled incised valley system. 
 

 

Datasets used in the analysis 



Coherence 
High Low 

Coherence 

Stratal slices from two different volumes 

1.5 km 

Datasets used in the analysis 



Gamma ray profiles: Upper Mannville channel  (NW-SE) 

7-31-12-26 9-30-12-26 4-29-12-26 15-20-12-26 15-17-12-26 12-17-12-26 
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15-20 

5-21 

12-17 

Seismic Facies Analysis 
At some points within the 
channel, the incision or 
cut is more than 30m with 
multiple fining upward 
sandy fill cycles, typical of 
a point bar buildup. 
 
At other points the 
channel cut does not 
appear to be as deep and 
sandy fill is not evident. 
 

 
Outside the channel 
signatures of interbedded 
sands, silts, shales and coal 
stringers are seen. 
 
Log correlation in the E-W 
direction indicates the 
presence of multiple 
channels within the main 
channel, and clean overbank 
sands (crevasse splays). 



60 ms 

1.5 km 

Seismic Waveform Classification 

Let the computer represent the data with 12 clusters  

Latent Space Axis  1 

Dim #1 

Dim #5 

Dim #10 



60 ms 

1.5 km 

Seismic Waveform Classification 

Let the computer represent the 4 most important clusters 



60 ms 

1.5 km 

Unconstrained hierarchical classification 

Seismic Waveform Classification 

Let the computer represent the 7 most important clusters 



60 ms 

1.5 km 

Unconstrained hierarchical classification 

Seismic Waveform Classification 

Let the computer represent the 9 most important clusters 



Seismic Facies Analysis 

Unconstrained hierarchical classification Classification with 
fixed no. of groups 



GTM 1 GTM 2 Coherence 

Hig
h 

Low 1.5 km 1 0 

Seismic facies classification using a 9D vector of  
attributes at each voxel 

1. Most-positive curvature 
2. Most-negative curvature 
3. Peak frequency 
4. Peak spectral magnitude 
5. Bandwidth 
6. GLCM contrast 
7. GLCM homogeneity 
8. GLCM entropy 
9. GLCM energy 



3D SOM (1D Latent Space) GTM_Proj1 GTM_Proj2 

Using coherence, Sobel-filter, inline energy gradient and crossline energy gradient attributes  

88 ms below a flattened marker 



GTM_Proj2 GTM_Proj1 Coherence 

156 ms below a flattened marker 

Using coherence, Sobel-filtering, inline energy gradient and crossline energy gradient attributes  



GTM_Proj1 GTM_Proj2 Coherence 

176 ms below a flattened marker 

Using coherence, Sobel-filtering, inline energy gradient and xline energy gradient attributes  
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(Facebook communication on 10/18/2011. Origin unknown) 

Color perception: Men vs. women. 
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Interactive color bar definition 
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1D histogram Axis 1 

1D histogram Axis 2 
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Coherence 

Crossplot of coherence versus most-

positive curvature 

Overlay of the cluster of points enclosed in a polygon  on the crossplot of coherence 

versus most-positive curvature, on  the coherence strat-slice. The red lineaments 

align with the faults that one would interpret on the coherence strat-slice 

Crossplotting discontinuity attributes 



Coherence strata-cube 

3D Crossplotting of discontinuity attributes 



(Facebook communication on 10/18/2011. Origin unknown) 

Color perception: Men vs. women. 
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GTM axis 1 

Interactive cluster definition 



+40 ms 

Latent axis 1 

La
te

n
t 

ax
is

 2
 



+35 ms 

Latent axis 1 

La
te

n
t 

ax
is

 2
 



+30 ms 

Latent axis 1 

La
te

n
t 

ax
is

 2
 



+25 ms 

Latent axis 1 

La
te

n
t 

ax
is

 2
 



+20 ms 

Latent axis 1 

La
te

n
t 

ax
is

 2
 



+15 ms 

Latent axis 1 

La
te

n
t 

ax
is

 2
 



+10ms 

Latent axis 1 

La
te

n
t 

ax
is

 2
 



+5 ms 

Latent axis 1 

La
te

n
t 

ax
is

 2
 



 0 ms 

Latent axis 1 

La
te

n
t 

ax
is

 2
 



-5ms 

Latent axis 1 

La
te

n
t 

ax
is

 2
 



-10 ms 

Latent axis 1 

La
te

n
t 

ax
is

 2
 



-15 ms 

Latent axis 1 

La
te

n
t 

ax
is

 2
 



-20 ms 

Latent axis 1 

La
te

n
t 

ax
is

 2
 



-25 ms 

Latent axis 1 

La
te

n
t 

ax
is

 2
 



-30 ms 

Latent axis 1 

La
te

n
t 

ax
is

 2
 



-35 ms 

Latent axis 1 

La
te

n
t 

ax
is

 2
 



-40 ms 

Latent axis 1 

La
te

n
t 

ax
is

 2
 



-45 ms 

Latent axis 1 

La
te

n
t 

ax
is

 2
 



-50 ms 

Latent axis 1 

La
te

n
t 

ax
is

 2
 



-55 ms 

Latent axis 1 

La
te

n
t 

ax
is

 2
 



Conclusions 

4. 2D latent spaces can be interactively explored using 
modern interactive color tools or polygonal definition 
of the 2D histogram. 

1. GTM and SOM provide excellent tools to extract 
patterns seen in seismic data.   

2.   Input seismic attributes need to measure the facies 
      characteristics we wish to differentiate. 

3. 2D latent spaces provide a better representation of the 
      high dimensional data than 1D latent spaces. 
   




