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Abstract

Accurate and repeatable assessments of in situ stress magnitudes and orientation in unconventional reservoirs can be complicated by the
heterogeneous, inelastic, and/or anisotropic mechanical properties of these rocks. The associated vertical and lateral variation in pore pressure
and stress through the target zones and bounding intervals can further complicate this effort. For these reasons, some additional factors need to
be considered beyond the typical workflow of determining stress state from mini-frac type data and using this data to calibrate log derived
stress profiles. We present some case study examples from hydrocarbon-producing shales where a more rigorous analysis of the injection test
data and of the shale mechanical properties has allowed a more accurate and repeatable assessment of in situ stress and potential for lamination
shearing. Horizontal fracture growth through shear activation of bedding-parallel fabric can be a preferred fracture propagation mechanism in
these shales and this behavior can be diagnosed by this improved workflow. In one case study example, in the tight gas Montney siltstone of
Western Canada, shear strength anisotropy is shown to be very significant, with bedding parallel shear cohesion less than 10% of the bulk rock
cohesion. It is shown through theory and through pressure transient analysis of case study minifrac injection data that shearing of laminations
can be predicted, diagnosed and minimised during hydraulic fracturing stimulation. This shear fracturing mechanism is also stress dependent
and its understanding requires assessment of all in situ stress magnitudes, not just minimum horizontal stress. An improved method of
determining these stress magnitudes is described through multi-component acoustic measurements in core samples. In this way, a petrophysical
relationship can be established between anisotropy parameters and rock properties.
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Lithological Controls on Anisotropy in Shales to Predict In Situ Stress Magnitudes and
Potential for Shearing of Laminations During Hydraulic Fracturing

= Reason for topic
= Anisotropy in Shales
« Directional dependence of properties: stiffness, strength, flow
= Lithological Controls
« Can lithology predict this?
= Implications and applications: stress magnitudes, lamination shearing
= Summary
= Questions

www.tricanwellservice.com 2




Reason for Topic (TricAN]

Observations:

Anisotropy perceived as having 2" order importance, not always true
Elastic anisotropy

+ Cost to obtain data, uncertain ROI

Mechanical data not often used beyond log calibration for frac model

Minimal elastic anisotropy and significant strength anisotropy can coexist
Strength anisotropy

* Aspectrum from laminated bedding to PSF

*  Below log resolution

«  Weakest zone is most important, obscured by averaging methods
Lithology is well understood, how can we use it to improve concept of anisotropy

www.tricanwellservice.com 4




Anisotropy: Measurement

(TricAN]

Duvernay - Nordegg comparison
Triaxial Stress-Strain Response @ 30 MPa
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Elastic Anisotropy: Dynamic Data (rricaN]

o; = Cij& Stress related to strain through a stiffness tensor :,“,m;m,zz"

Cip Csy Cyuyy Cypy Ciy 5 unique stiffness parameters for VTI anisotropy

C,= pvﬁ(x,y) Vp in x-y plane (hz core), hz Stoneley

Caz = PV Vp in z-axis, or DTC Jenner, 2011 CSEG
Cor = PVevry) Vs in z-x or z-y plane, DTS

Cos = PVen(ey) Vs in x-y plane, Stoneley if § < 0.2

C3=—Cy +J(4PV;32(45) — 2pV245)[C11 + Ca3 — 2C44]) + (Cr1 + Cas)(C33 + Cas)

Cis requires Vp propagated 45 degrees to x-y plane...core plugs

Both VTl and HTI models require Vp oblique to symmetry
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Elastic Anisotropy: Data Calibration (rricaN]

Static & Dynamic Response to Stress
Horizontal Plug

Static-Dynamic log-core calibration for VTI: o
= Oriented core plugs with multi-axis acoustics e :
= All 5 Cij parameters possible in a hz plug

= Simultaneous static-dynamic measurements

Sample 2 Horizontal- Phase Velocity (m/s)
o

Velocity

. w0 u
Stress (MPa)

Sample 2 Horizontal
Ultrasonic Velocity vs. Axial Stress

—P-Wave

Voot (/)
BE
|

F i
N
N

pad]

{r

30000 H o
< Eiis7
£ 20000 "
i | /
S 10000 |/
o0 1
38 10038 20038 30038 40038 50038 -
Signa (ool
www.tricanwellservice.com 7

Presenter’s notes: Properties vary vertically in fine scale layers and/or, preferred orientation of clay minerals.



Anisotropy: Implications for Stress Estimates (rricAN]

= ‘“weak planes”, etc mean caution required using elastic models
= Stress estimates using calibrated elastic models for VTI anisotropy:
*  Minimum horizontal stress

!

o'y p°, + strain terms Thiercelin and Plumb, 1994
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Strength Anisotropy (rricaN]

Rock is inherently weak along laminations, so strength may depend on position
of laminae with respect to stress
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Strength Anisotropy: Measurement (rricaN]

PSF

No shear
cohesion

Direct Shear Test of Laminations
Constant Normal Stress = 5 MPa

Weak laminae

Shear Stress (MPa)

Shear cohesion

Shear strength measurement of
specific laminations using direct
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Shear dilation is observed.
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Anisotropy in Shales (rricaN]

Duvernay: Examples of laminations defined by clays & organics
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Anisotropy in Shales (rricaN]

Nordegg: Examples of laminations defined by carbonate & organics
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Presenter’s notes: Ante Creek example:

. Left: NDGG 6-9 2037m 40x ppl sparse biomicrite/bioclastic dolowackestone. Laminations defined by elongated dolomite lenses and thin, opaque o0.m. lenses.
. Mid: NDGG 6-9 2034m 200x ppl sparse biomicrite/wackestone, ellipsoidal authigenic qtz cement along algal laminae

. Right: NDGG 6-9 2033m 100x ppl overexposed, large organic fragments and wavy algal laminae



Anisotropy in Shales (rricaN]

“
.
w .
§a o
ja et
i o
0 : ° N 008

Showing mineralogy and Ky = Zn_ Vv _
Ev 1- VUnp




Strength Anisotropy: Montney example (rricaN]

2. #32-A 3. #41
Finely laminated Black organic-rich mudstone (shale) with
siltstone with laminae few coarse silty grains (quartz, dolomite,
of variable particle size feldspars) with high amounts of organic
and  organic matter bituminous material and

composition. The pyrite (opaque) and no open
pervasive calcite pore spaceis recognized, but
cement (30-40%) filling induced cracks occar
minor opaque bituminous up most of the inter-
and pyrite material and grain pores. No open
clay (ncl. mica). pores can be observed. bottom panel)

(indicated by the epoxy pinky
traces near the top of the

£8Y

SPE 168730
Laminae & clay structure suggest strength anisotropy
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Strength Anisotropy: Montney example

High resolution profiling by
indentation or scratch testing
identifies weak planes.

A range of shear strengths for
each lithology.
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Strength Anisotropy: Montney example (rricaN]

. Shear Strength of Laminations P S F
7
8 No shear
g cohesion
24
2 o s T tamisiors
& 5 10 06
: Z N
o & . « = Weak laminae
0 2 4 6 8 10 o E
Shear Strain (%) é % 5 g
Shear strength measurement of X . o Shear cohesion
specific laminations using direct ' -
shear testing. j .. Dilatant failure

o 1 2 3 &4 5 6 7 8 9 10
Shear Strain (%)

Shear dilation is observed.
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Strength Anisotropy: Montney example (rricaN]

Rock Matrix: Cy = 18 MPa, § = 40° Rock Matrix: C = 18 MPa, ¢ = 40°
Laminations: Co = 3 MPa, ¢ = 25° Laminations: Cg = 3 MPa, ¢ = 25°

Shear stress, © (MPa)
Shear stress, T (MPa)

a 25 50 é:fe‘ﬁvl:an,m;ﬁ'ms:_s:‘w;:]s 200 225 250 0 25 50 75 N;?ialﬂ:;;‘o(:;:al 175 200 225 250
Linear failure criteria for rock NWB stress concentration for MNTN
matrix and laminations. in this area favors lamination
*Matrix contains laminations. shearing at some orientations.
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Anisotropy: Implications for Stress Estimates (rricaN]

= ‘“weak planes”, etc mean caution required using elastic models
= Stress estimates using calibrated elastic models for VTI anisotropy:
* Minimum horizontal stress

Ey VpE)
1—v,2h T v,z H Thiercelin and Plumb, 1994

! !
o v+

Ko
» Near-wellbore stress for isotropic case

0'6(90° = 30" pin — 30" o — AP Kirsch, 1898

w

*  NWB stress concentration for anisotropic

o'y = Ao’e'A ey Bo’e,B +Ca’ 6 pw Jaeger and Cook, 2007




Strength Anisotropy: Implications for Fracturing (rricaN]

= Near wellbore stress examples using isotropic elastic models

e i - 7 -~
Stress |MPa Well Cond-ns T WY

SHmin |57 Ppgrad |14 % 4

SHmax |75 Mud grad |14

180 35

Hz, azi = SHmin
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\ - Multple (st wellbore
® - Reorientation OHmin

+ Reorlentation

oy o weetibore) (Abass et al., 1992)

Vertical well

180
Hz, azi = SHmax sw=wvrs
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Presenter’s notes: In HZ high stress settings, Sh,;, azimuth well is preferred for transverse fractures, limits fracture turning (tortuousity), thus reducing treating pressure, and favoring proppant placement. In strike-
slip settings, hoop stress makes horizontal initiation easier.



Strength Anisotropy: Implications for Fracturing (rricaN]

MC-analysis of Montney
o example following
Couzens-Shultz and Chan,
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T L, fw 2007
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= Increasing awareness of complex fracture behaviour during diagnostic tests
= Complex fracture models, PTA techniques being used to unravel some aspects

= Mechanically, laminations can be shown to be prone to shear failure in NWB region or
some distance from tensile initiation




Summary (TricAN]

= Laminations are important
= Clays, mineralised lenses, organic matter may comprise laminae
= Anisotropy severity and type will depend on this
= Lithology-based mechanical property relationships required
= Strength anisotropy can be constrained and shouldn’t be overlooked
= Non-linear models better represent weak planes

« Eg. Barton-Bandis

Roughness and strength of sheared surface control aperture, perm and shear
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