Abstract

Integration of core facies, image log facies (ILF) and wireline logs from heterogeneous turbidite and basinal organic mudstone systems, increases the confidence levels for the database for building regional scale depositional models. Image logs provide a key link to characterize facies and processes in comparison to wireline logs, and can be used to bridge the correlation between core facies and wireline logs for up-scaling. Systematic use of ILF as part of the correlation increases the data set for facies interpretation, as there is greater availability of image logs compared to core. This presentation details a method that uses borehole image logs to extend core-based facies and process analysis to intervals that lack core, in above-mentioned sedimentary systems. The method is successfully used in a workflow that distinguishes carbonate, quartz, mud-rich turbidites and debris flows deposited with organic-rich silicic mudstones in an unconventional play of the Delaware basin. When using this method, electrode data from each pad of the micro-resistivity imaging tool (in water-based mud) is mathematically shifted to generate synthetic micro-resistivity logs that follow the trend of the shallow resistivity logs. The high-resolution electrical data that best represents the sedimentary facies derived either from a single pad, or the averages from multiple pads of the imaging tool is selected. Next, the high-resolution electrical data and detailed sedimentary textures visible from the image logs are used to identify the ILF and in turn calibrated with core facies. Caution is taken while using electrical data for facies identification as those can be severely affected by pore fluid properties. In the current effort, triple-combo logs are considered for identifying broad lithological variation and ILF for more detailed characterization. The results show that of the 10 detailed core facies from cored intervals of mud-dominated turbidite sequences from lower and middle part of Wolfcamp Formation, six can be identified.
from the image logs. Within the sand-dominated turbidite sequence from upper most part of Wolfcamp Formation, three
different ILF are identified out of four core facies. Four different types of sedimentary processes are also identified from the
image logs. Finally, the ILF are successfully extended to identify the sedimentary facies and processes of Wolfcamp Formation
over those imaged intervals that lack core in a specific well and in the nearby wells.

Reference Cited

Silver, B.A., and R.G. Todd, 1969, Permian cyclic strata, northern Midland and Delaware Basins, west Texas and southeastern
Using Image Logs to Identify Facies in Heterogeneous Turbidite and Basinal Organic Mudstone Systems from the Wolfcamp Formation, Delaware Basin, West Texas, USA

Suspa Chowdhury Sinha, Dipanwita Nandy*, William R. Morris **, Nathan Rogers **

AAPG Annual Convention & Exhibition 2015
Denver
June 1st, 2:20 pm

* Colorado School of Mines, ** ConocoPhillips
Topics

- Objective
- Introduction
- Work flow
- Atlas of Image log facies
- Image log facies: Scope of application
- Limitations
- Conclusion and path forward
Objective

- Develop a methodology to use Image logs for characterizing core-calibrated sedimentary facies.
- Prediction of core-calibrated sedimentary facies over intervals without core.

Resolutions of conventional logs are low to identify detail sedimentary facies in this heterogeneous system.
## Introduction

### Study Area

![Map of the study area showing Well-1](image)

**Well-1**

### Stratigraphic Unit

<table>
<thead>
<tr>
<th>System</th>
<th>Series</th>
<th>Delaware Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permian</td>
<td>Guadalupian</td>
<td>Delaware Sands</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dewey Lake, Rustler, Salado, Castile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bell Canyon, Cherry Canyon, Brushy Canyon</td>
</tr>
<tr>
<td></td>
<td>Leonardian</td>
<td>Bone Spring, Wolfcamp</td>
</tr>
<tr>
<td>Pennsylvanian</td>
<td>Atokan</td>
<td>Cisco, Canyon, Strawn, Strawn, Atoka</td>
</tr>
</tbody>
</table>

**Source:** Silver and Todd, 1969

![Core intervals](image)
Well-1 - Litho-facies from Core

- Ternary diagram displays wide compositional variation of different mudstones identified from core, well-1.
Work Flow

Image log data loading, processing, depth-shift etc..

Extraction of high resolution electrical button data from image log

Using those data to generate synthetic micro-resistivity curve following shallow resistivity data

Determining the identifiable types of litho-facies and depositional processes using the synthetic micro-resistivity

Selecting the best representing examples of each image log facies (Atlas)

Calibrate picked image log facies with core description

Extending image log facies over those intervals without core

Further application......
Button data from each of the pad/flap of FMI tool are shifted using an algorithm to generate the synthetic micro-resistivity curves.
## Identifiable Image Log Facies

<table>
<thead>
<tr>
<th>Core Description (Facies+Process)</th>
<th>Image Facies (lithology)</th>
<th>Image Facies (Process)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 facies</td>
<td>9 facies</td>
<td>4 processes</td>
<td></td>
</tr>
<tr>
<td><strong>Calcareous Sandstone/Calcereous Silty Sandstone/Calcereous Muddy Sandstone</strong> Debris flow</td>
<td><strong>Calcereous sandstone/Calcereous dominated flow</strong></td>
<td>Debris flow</td>
<td>Debrites</td>
</tr>
<tr>
<td><strong>Mud Clast dominated Debris Flow</strong></td>
<td><strong>Mud clast dominated flow</strong></td>
<td>Debris flow</td>
<td>Debrites</td>
</tr>
<tr>
<td><strong>Calcereous Mudstone_Mudflow</strong></td>
<td><strong>Calcereous mudstone</strong></td>
<td><strong>Mud_flow</strong></td>
<td>Slurry Flows (often distal memb of debris flow)</td>
</tr>
<tr>
<td><strong>Siliceous Mudstone (Massive/Bioturbated/Varved_Bioturbated)</strong></td>
<td><strong>Siliceous mudstone</strong></td>
<td>Massive</td>
<td>Silty Facies (Biogenic silica or windblown dust); varying carbonate content. Windblown dolomite behaves as stable clast.</td>
</tr>
<tr>
<td><strong>Mudstone/Silty Mudstone (Massive/Bioturbated)</strong></td>
<td><strong>Silty mudstone</strong></td>
<td>Massive</td>
<td></td>
</tr>
<tr>
<td><strong>Green Mudstone/ Green Silty Mudstone/Green Calcereous Mudstone/Silty Mudstone /Muddy Siltstone</strong></td>
<td><strong>Green silty mudstone/ Muddy siltstone</strong></td>
<td><strong>Mud_flow</strong></td>
<td>Terrigenous clay (slurry flows)</td>
</tr>
<tr>
<td><strong>Siltstone/Muddy sandstone/calcereous siltstone(massive/bioturbated)</strong></td>
<td><strong>Siltstone/Calcereous siltstone</strong></td>
<td>Massive</td>
<td>Turbidites (HDT/LDT)</td>
</tr>
<tr>
<td><strong>Sandstone/Silty sandstone (massive/bioturbated)</strong></td>
<td><strong>Sandstone</strong></td>
<td><strong>Turbidites</strong></td>
<td>Turbidites (HDT/LDT)</td>
</tr>
</tbody>
</table>
Using synthetic micro-resistivity cut-off values to distinguish different mudstone variety.

Caution for fractured intervals.
In addition to the micro-resistivity cut-off values, image log features need to be considered for characterizing facies.
Both micro-resistivity cut-off values and image log features are considered to distinguish between different debris flow type.
Micro-resistivity curve and image features characterize fine mudstone lamination.
Predicting Facies over Intervals Without Core

- Image log facies are calibrated with detail sedimentary facies from core.

- The image log facies model is used to predict sedimentary facies over intervals without cores.
Correlation of IMF with Reservoir Character

- Image log facies display variation of TOC and mechanical properties
Correlation of IMF with Rock-mechanics Data

Image log facies display variation of mechanical properties.
Limitations

- Button data (in WBM) needs to be calibrated for each well and vendor.

- Electrical Button data can be severely affected by fluid properties, need to be calibrated with conventional logs.

- Very fine scale heterogeneity is beyond image log resolution.
Conclusion and Path Forward

Image Log Facies,

- **Bridge between core-facies and petrophysical-facies to support rock-typing**
- **Increase confidence in regional depositional model**
- **Can correlate with reservoir quality to identify ‘sweet spot’**
- **Can correlate with rock-mechanics data to identify mechanical stratigraphy**
Acknowledgement

- ConocoPhillips’ Lower 48 Exploration and Delaware Basin Team (Mid-Continent Business Unit) for permission to present the data.

- ConocoPhillips’ Geological Technology Team for providing the infrastructure to perform the current work.

- Individuals from ConocoPhillips,
  - Ray Reid
  - Sam Huisman
  - Tom McClurg
  - Jesus Salazar
  - Amanda Reynolds
  - Ben Lascaud
  - Chris Barrett
  - Christophe Mornet
  - Peter Hennings
  - Mark Olson