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Abstract

Deepwater sediments hold a significant amount of hydrocarbon reserves and have always been the most challenging reservoirs to explore and
produce. Conventional sequence stratigraphic model for deepwater clastic system consider that deposition and growth of submarine-fan mostly
occurs during relative sea-level fall or lowstand. However, recent studies by various workers have shown that sediments can be supplied to
deep water even during rising sea level if the sediment supply is high enough to prograde the entire shelf-edge. In order to apply the concepts
of sequence stratigraphy for deep-water clastic systems, it is important to understand the various factors other than relative sea-level change,
which controls the deep-water clastic sedimentation. VVarious outcrop, subsurface and modern examples have been reviewed to show how
factors like rate of sediment supply, shelf-edge width, and gradient along the relative sea level change are significant for developing the
sequence stratigraphic model of a deep-water system. Deepwater sediments can either onlap to underlying unconformable surfaces or form a
linked shelf-slope-basin system. Brushy Canyon Formation in the Permian Basin is a classic example, which has deposition of carbonates
during highstand and deposition of deepwater clastic submarine fans and slope channels onlapping against the underlying sequence boundary
during lowstand. A linked lowstand shelf-slope-basin system is found in the Kuitei Basin (East Kalimantan) during Pleistocene. This study also
concludes that deepwater submarine fans are not uniquely related to relative sea-level fall/lowstand. Examples were found in Lewis Shale
Formation in the Washakie Basin, Oceanside and Carlsbad canyon-channel system in the California Boarderland Basin, and Upper Sobrarbe
Formation in the Ainsa Basin (Northern Spain). Results show that submarine fans and channel-levee systems can develop at any relative sea
level, lowstand, highstand or standstill. Shelf-edge delta acts as the sediment source and progradation of these deltas are able to transport coarse
sediments to deep water during highstand. The development of highstand submarine fans requires a strong fluvial drive on the deltas. Lowstand
submarine fans tend to be bigger thicker and laterally extensive while the highstand submarine fans tend to be smaller and less laterally
extensive. Therefore, lowstand deepwater fans are expected to hold more hydrocarbon reserves than highstand fans.
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BACKGROUND

Deepwater sediments hold a significant amount of
hydrocarbon reserves and have always been the most challenging
reservoirs to explore and produce. Conventional sequence
stratigraphic model for deepwater clastic system considers that
deposition and growth of submarine-fan mostly occur during
relative sea-level fall or lowstand. However, recent studies by
various workers have shown that sediments can be supplied to
deep water even during rising sea level if the sediment supply is
high enough to prograde the entire shelf-edge. In order to apply the
concepts of sequence stratigraphy for deep water clastic systems, it
IS important to understand the various factors other than relative
sea-level change, which controls the deep water clastic
sedimentation.

OBJECTIVES

« Summarize different types of deep water depositional models,
particularly focus on geometric relationship and relative sea
level change.

* Understand the combined role of relative sea-level change,
sediment supply and shelf-width in each type of the deep-water
system classified before.
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Figure.1 Exxon "Slug model™ showing lowstand deep-water
submarine-fan in a classical sequence stratigraphic model.

Generally, these classical models are based on passive
continental margin setting, where the deepwater clastic
environment corresponds to the continental slope and the abyssal
(basin floor) settings. The shelf edge acts as  the boundary
between the shallow and deep water environment. The slope acts
as the route for sediment bypass.

During relative sea level fall or lowstand, the river and delta
are forced to prograde to the shelf edge and become entrenched
and if the sea level falls below the shelf break, sediment bypasses
directly onto the slope and basin floor. The prograding shelf-edge
delta or incised valleys acts as the feeder for deepwater submarine-
fans.

During periods of sea-level rise and highstand, these models
postulate that the sediment budget is mainly stored on the shelf
with little sand reaching the slope or basin floor and the deep-water
fans (low-stand) become draped by muds and condensed sections
develops. The famous Exxon “slug model” in figure 1 shows the
position and geometric onlapping relationship of the lowstand
submarine-fans with the underlying sequence boundary and other
system tracts.

METHODOLOGY

Detailed literature review was done to compile outcrop, sub-
surface and modern-day example for deep water clastic systems.
Examples include:

* Brushy Canyon Formation in the Permian Basin

* Pleistocene deposits in the Kuitei Basin

* Lewis Shale Formation in the Washakie Basin
 Oceanside and Carlsbad canyon-channel

California Borderland Basin
» Upper Sobrarbe Formation in the Ainsa Basin

Example from each type of deep-water clastic system will be
discussed along with the factors which controlled its formation. This
will be followed with discussion on conceptual and industrial
significance of this study.

system in the

SIGNIFICANCE

Onlapping submarine fan and channel levee systems form a
closed system which traps the hydrocarbon. While in a linked
shelf-slope-basin system, the continuous-connected sand-body can
act as a conduit for hydrocarbon migration from the basinal fans to
shelf-edge delta.

Lowstand submarine fans also tends to be bigger thicker and
laterally extensive while the highstand submarine fans tends to be
smaller and less laterally extensive. So, lowstand deepwater fans
have higher potential to hold more hydrocarbon reserves than
highstand fans.
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Figure 3 Diagram explains the differences between highstand vs.
lowstand submarine fans. From Carvajal and Steel, (2006)

ONLAPPING (Lowstand)

Brushy Canyon Formation in the Permian Basin is a classic example, which has
deposition of carbonates during highstand and deposition of deepwater clastic submarine
fans and slope channels onlapping against the underlying sequence boundary during
lowstand.
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Figure.4 Schematic figure showing the Upper Permian stratigraphy in a cross-section of
north- west shelf of Delaware Basin and the third-order sequence stratigraphy of the
Guadalupian formations. Deepwater clastic deposits of Brushy Canyon Formation is in the
lowstand system tract. (sempstrat.org)

Figure. 5(Left) Map showing location of Permian
Basin. (Right) Upper Permian stratigraphy of Permian
Basin (sempstrat.org)

gure.6 Outcop pael showi Brushy Canyon Formation onlapping against the sequence
boundary between the Leonardian and Guadalupian strata.(Sempstrat.org)

APPROACH

» Deep water submarine fans and channel-levee systems can
develop both during sea level fall or lowstand, and sea level rise
or highstand. So only lowstand system tract cannot be
ubiquitously assigned to deep-water clastic sediments.

 Onlapping relationship of deep water clastic sediments against
the sequence boundary is not a unique geometric feature, but
there are systems which forms a continuous linked geometric
relationship between shelf-slope- basin i.e. deep water clastic
sediments are non-onlapping.

A classification scheme of deep sea clastic sediments, based on
geometric relationship and relative sea level change has been
proposed as shown in figure 2.
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Figure.2 Classification of deepwater clastic sediments (submarine fans and
channel-levee system) based on relative sea level change and geometric relationship

NON-ONLAPPING (Lowstand)

« During Pleistocene, Kuitei Basin in East Kalimantan (fig. 7) has been subjected to three sea-level lowstand cycles.

« Seismic reflectors which corresponds to the first sea-level lowstand can be traced downslope from a prograding lowstand delta at shelf edge continuously to basin
floor fan in the central part of the Indonesian shelf (Saller et al., 2004).

« Oxygen isotope data collected from these sediments matches the Pleistocene sea level curve and it indicates falling sea level during the deposition of such a linked

lowstand delta and submarine fan.

« During the first sea-level lowstand that ended at about 240 ka, a shelf-edge delta prograded over the previous shelf edge, and sand-rich sediments spilled onto the
slope. Amalgamated and unconfined channel levee system developed along the slope and coeval deepwater submarine fans developed in the basin floor (fig. 8).
It has been interpreted that high sediment influx from the paleo-Mahakam delta which prograded along the shelf edge resulted in the formation of this linked

system (fig. 9).
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Figure.7 (Left) Map showing location of Kuitei Basin East Kalimatan, Indonesia.(Right) Schematic diagram showing three sea
level lowstand cycles in Plesotecene and the corresponding deepwater clastic sediment deposited in offshore Kalimatan.
(Modified from Saller et al., 2004)
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Figure. 8 (Left) Amplitude extraction 3-D map showing linked shelf edge delta-
amalgamated slope channels complex-sand-rich unconfined basin floor fan, in Kuitei
Basin. (Right) Amplitude extraction map showing, non-linked slope channels and basin
floor fans in a mud-rich system. High sand-rich sediment influx results in deposition of
linked system, while mud-rich, low sediment influx results in deposition of non-linked
system. (Modified from Saller et al., 2004)

Figure. 9 Combined seismic amplitude maps showing the paleo-
Mahakam delta can be linked to slope channels and submarine fans
in the central part of Kuitei Basin. Paleo-Mahakam delta was the
source of high sediment supply during the first cycle of Pleistocene
lowstand. (Seller et al., 2013)

ONLAPPING (Highstand & Sealevel standstill)

This study also concludes that deepwater submarine fans are not uniquely related to relative sea-level fall/lowstand. Examples were found in Lewis Shale
Formation in the Washakie Basin, Oceanside and Carlsbad canyon-channel system in the California Boarderland Basin, and Upper Sobrarbe Formation in the Ainsa
Basin (Nothern Spain). Shelf-edge delta acts as the sediment source and progradation of these deltas are able to transport coarse sediments to deep water during
highstand. The development of highstand submarine fans requires a strong fluvial drive on the deltas.
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