IOR: Improving Polymer Selection, Connecting Lab Results with Field Operation*

Isabel Vega¹, M. Isabel Hernández¹, Diana Masiero¹, Leticia Legarto¹, Silvana Gandi², Sergio Bosco¹, and Remigio Ruiz¹

Search and Discovery Article #41642 (2015)**
Posted June 30, 2015

**Datapages © 2015 Serial rights given by author. For all other rights contact author directly.

¹YPF Tecnologia S.A., Neuquen, Argentina (isabel.n.vega@ypftecnologia.com)
²YPF S.A., Argentina

Abstract

Polymer injection showed strong growth at the international level as a result of successful implementations at the Daqing Field in China, where polymer is being injected in more than 20,000 wells with an incremental production of 14% over secondary recovery. Taking into account this success and due to the necessity of improving the sweep efficiency and production acceleration in Argentina, YPF has planned the implementation of polymer injection in those reservoirs identified as having potential for this technology.

Laboratory studies became a first and fundamental stage to select the right polymer, as well as determining the target viscosity during flux (resistance factor) and rock adsorption. This information will help to simulate the process and estimate operative costs. Partially hydrolyzed polyacrylamides are the polymers widely used for these applications. One of the most important aspects to consider during injection is controlling chemical and mechanical polymer degradation at the lowest cost. Several chemical degradation processes might occur and the one with greatest relevance is that originated by free radicals. These radicals are generated by redox reactions in the aqueous media, and they attack the polymer chain lowering the molecular weight and viscosity.
In this work, laboratory resistance factor and retention determinations are discussed. During the core flow tests, run with formation plugs, chemical degradation occurred. It was demonstrated this kind of degradation process could be controlled by the addition of a reducing agent, assuring the reduced state by means of ORP (oxidation reduction potential) measurement.

On the other hand, the impact of these results might have during field implementation is discussed, as well as if injection water oxygen content is in the order of ppm. As a main conclusion, chemical degradation will not occur under reservoir reductive conditions. Best practices to avoid degradation in surface facilities and lab experiments are also mentioned.
IOR: Improving polymer selection, connecting lab results with field operation.

Isabel Vega, Ma. Isabel Hernández, Diana Masiero, Leticia Legarto, Silvana Gandi (YPF), Sergio Bosco, Remigio Ruiz
• INTRODUCTION

• EXPERIMENTAL METHODOLOGIES

• RESULTS

• CONCLUSIONS
INTRODUCTION

Natural flow

Secondary recovery

Waterflood

Pressure maintenance

Artificial lift

Pump, gas lift, etc.

Tertiary recovery

Thermal

Gas miscible / immiscible

Chemical & other

Improved Oil Recovery (IOR)

Enhanced Oil Recovery (EOR)

Combustion

Steam soak/cyclic

Huff-and-puff

Steam drive/flood

Hot water drive

Electromagnetic

CO₂

Nitrogen

Flue gas

Hydrocarbon

Source: Modified from Oil & Gas Journal, March 20, 2000
INTRODUCTION

• POLYMER FLOODING

After secondary recovery, polymer flooding allows improving oil sweep efficiency by increasing the viscosity of the displacement fluid.

Vertical Efficiency Ev Areal Efficiency Ea
EXPERIMENTAL METHODOLOGIES

OUTSIDE POROUS MEDIA

RHEOLOGY
- Viscosity vs shear rate
- Rheological model determination

STABILITY
- Chemical Degradation: viscosity changes as a function of temperature and time. Turbidity and precipitation
- Mechanical Degradation
EXPERIMENTAL METHODOLOGIES

INSIDE POROUS MEDIA

RETENTION
• Adsorption/Retention
• FR: viscosity during flow

INJECTIVITY
• Polymer Injection at different rates
• IPM shear rate calculation
CHEMICAL STABILITY

- HPAM is susceptible to oxidative degradation.
- If oxygen or free radicals are absent, C-C bonds in HPAM are very resistant.
- HPAM is much more resistant to biodegradation than natural polymers.

(Partially hydrolyzed Polyacrylamide)
Fe$^{2+}$ enters into the polymer solution during the flow through the reservoir. This iron does not affect HPAM, if no dissolved oxygen is present. If oxygen is present Fenton reaction occurs:

\[
\begin{align*}
\text{Fe}^{2+} + \text{O}_2 & \rightarrow \text{Fe}^{3+} + \text{O}_2^* \\
\text{O}_2^* + \text{H}^+ & \rightarrow \text{HO}_2^* \\
\text{Fe}^{2+} + \text{H}_2\text{O}_2 & \rightarrow \text{Fe}^{3+} + \text{OH}^* + \text{OH}^- \\
\text{PH} & \rightarrow \text{P}^* \\
\text{P}^* & \rightarrow \text{PO}_2^* \\
\text{PO}_2^* & \rightarrow \text{PO}-\text{OO}-\text{OP} \\
\text{PO}^- & \rightarrow \text{F} + \text{F}^* \\
\text{O}_2^- & \rightarrow \text{H}_2\text{O}_2 \\
\end{align*}
\]

Mc Kay et al. Polym. Deg. & Stab. Parts I and II

Fragments of lower Mw
1. Setup of 3 core plugs.
2. Water injection. K eff measurement at Sor.
3. Polymer + tracer. FR determination.
4. Polymer and tracer concentrations monitoring.
5. Water injection. Polymer and tracer concentrations monitoring. Polymer retention calculation.

Iron content (FRX): 1-2% (DB-145)
Viscosity loss - Chemical Degradation

ORP of this study > - 400 mV. This won’t be real reservoir conditions!
POOR PLUG CONSERVATION?

OR

POLYMER ISSUES?
RESULTS

- Stability Tests performed in solutions of 1500 ppm of different commercial polymers:

1. Presence of crushing of new plugs (iron content ca. 1%)
2. Presence of 35 ppm NH$_4$HSO$_3$ (used as oxygen scavenger)
3. Presence of Fe$^+$
4. Presence of 500 ppm Fe (II)
RESULTS

When Fe (II) is present in solutions with dissolved O$_2$, polymers lose great part of their initial viscosity by free radicals attack even at temperatures close to RT.

<table>
<thead>
<tr>
<th>Viscosity loss (%)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock crushing</td>
<td>6,1</td>
<td>11,1</td>
<td>25,9</td>
<td>7,6</td>
<td>11,3</td>
<td>13,4</td>
<td>10,3</td>
<td>5,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Viscosity loss (%)</th>
<th>A</th>
<th>D</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution Stability</td>
<td>1,5</td>
<td>0,2482</td>
<td>1,2</td>
<td>1,5</td>
</tr>
<tr>
<td>35 ppm NH4HSO3</td>
<td>3,4</td>
<td>4,6</td>
<td>9,3</td>
<td>19,1</td>
</tr>
<tr>
<td>500 ppm FeSO4</td>
<td>95,2</td>
<td>94,6</td>
<td>95,6</td>
<td>96,4</td>
</tr>
<tr>
<td>Fe°</td>
<td>78,9</td>
<td>82,8</td>
<td>76,4</td>
<td>85,5</td>
</tr>
</tbody>
</table>
RESULTS

When reservoir cores were stored under conditions that promote oxidation of iron containing minerals, a coating of ferric ions on the surface would be formed together with ferrous ions in the bulk (Fe° partial oxidation). If oxygen is present, the redox pair Fe(II)/O₂ will attack the polymer by Fenton reaction (seen before).

Pope et al. SPE-1699887-MS
RESULTS

Reservoirs have reduced conditions coming from the redox reactions between Fe$^{3+}$ and organic reductants such as methane and phenolic compounds in crude oil.

In order to accomplish the same reduced reservoir conditions during core flow tests, a chemical choice is the addition of sodium dithionite to get the ORP < -400 mV.
RESULTS

AFTER THE ADDITION OF 800 ppm OF DITHIONITE:

Adsorption/Retention = 30 µg/g rock
Sedimentary rocks contain a variety redox sensitive materials at least in small amounts: such as pyrite, siderite and sedimentary organic matter. Because siderite and pyrite precipitate from solution, they are found at the grain boundaries, thus they have direct contact with fluids of pores. Pyrite, siderite and organic matter in some cases dramatically lower the oxygen level into the reservoir. This process is accompanied by the release of Fe(II) to the formation water.
A key message is that dissolved oxygen will be removed fast into the reservoir and will not propagate very far into it, and no significant amounts of iron will be released to the reservoir until all dissolved oxygen is consumed.

- Dissolved oxygen that entered the reservoir prior to polymer injection will have been consumed and will not alter polymer stability.

- If an oxygen leak, coming from surface facilities or piping, develops during the course of polymer injection, the oxygen will not compromise the stability of the polymer that was injected before or after the leak is fixed.

Seright et al. SPE-121460-MS
CONCLUSIONS

• If oxygen is present in levels higher than 200 ppb, any presence of iron, oxygen scavenger, polymerization impurities, H2S; HPAM stability could be jeopardized.

• In order to prevent polymer degradation when core flow tests are being run with real core plugs, it is crucial to maintain a reducing environment to simulate the reductive reservoir conditions.

• If oxygen is reintroduced to the system after chemical oxygen scavenger was applied, a redox couple is formed and degrade the polymer.

• During polymer injection, assuring dissolved oxygen at undetectable levels will help to maximize polymer stability regardless Fe (II) content.