Abstract

Wireline identification of commercial potash mineralization can be both simple and straightforward or quite complex, depending upon the mineralogy present.

Potash minerals are radioactive because of the presence of the radioactive ^{40}K isotope. This characteristic has led to developing core based log transforms of total gamma ray log measurements to estimate potash ore grades. Unfortunately, the core transform approach is compromised by the occurrence of ^{232}Th decay series and/or ^{238}U decay series isotopes. Potassium/Uranium/Thorium (K-U-T) spectral gamma ray logs can isolate ^{40}K from the uranium and Thorium series isotopes. While this removes some of the problems of identifying commercial potash deposits, not all potash minerals are commercial, so more sophisticated multi-mineral techniques have been utilized.

Multi-mineral analyses have been successfully utilized to estimate potash assays in Saskatchewan and Cape Breton Island. This approach is limited, however, by the number of wireline measurements available. For example, the McNutt Member of the Salado Formation in the SE New Mexico Potash Area contains six different potash minerals, only two of which are commercial, and four non-radioactive evaporite minerals, as well as radioactive “Marker Beds”, and claystones. Multi-mineral analyses, for this situation would require 11 different physical property measurements, to be most effective.

A simple screening technique utilizing only two log measurements: Gamma Ray and Neutron Porosity, is proposed and successfully demonstrated for potash deposits in Michigan, New Mexico, Nova Scotia, and Saskatchewan.
Simple Screening Technique

For Identifying Commercial Potash

dgh@hillpetro.com
SE New Mexico Potash Assay Results

• A Mining Company claimed the following Potash Assay results from their analysis of Cased-Hole GR and Neutron logs from a recently drilled Oil Well:
 ➢ Five intercepts of commercial grade (%K₂O Sylvite and/or Langbeinite) Potash Ore.
 ➢ Total Reserves in excess of 1.2 MM Metric Tones of Potash/Acre Reserves.

• Core Assays from core hole, located only 200 ft from the above oil well yielded the following XRD/XRF assay Results:
 ➢ Only one marginal (%K₂O Langbeinite) Potash intercept in a stratiform evaporite basin.

• *How could they have been so wrong?*
What is Potash

• There is no mineral with the formula: K_2O.

• The term, “Potash” (K_2O) traces its origin to North American Colonial times:
 – Hardwood timber was burned,
 – The ashes leached,
 – The leachate dried, and
 – The resulting black powder (Pot Ash, or K_2CO_3), refined to K_2O and used in the manufacture of gun powder.

• The current usage of “Potash” (%K_2O) is one of convenience for commodity transactions.
 – *All natural occurring potassium minerals have been assigned equivalent “Potash” (%K_2O) values.*
US Potash History

- Potash, derived from the ashes of burned hardwood logs, was one of the first major exports of British Colonial North America.
- Prior to World War I, most Potash used in the US, for gun powder and fertilizer, was imported from mines in Eastern Europe.
- Blockades of German Ports, during World War I, denied the US of access to Eastern European mined Potash, forcing rationing.
- Shortages of mined potash, during World War I, resulted in Potash being declared a “Strategic Mineral”.
- Modest potash deposits were discovered between World War I and World War II, in SE New Mexico, the Paradox Basin of E Utah, and later deep deposits in The Michigan Basin.
- Discovery of the Prairie Evaporite Potash Deposits in Saskatchewan, in the 1940’s eclipsed all US Potash operations and changed the economics of US Potash mining operations.
SE New Mexico Potash Area

• Potash was discovered in SE New Mexico oil well cores, in 1925.
• The US Secretary of the Interior created the SE New Mexico Potash Area/Enclave, in 1931.
• The purpose of the order was to preserve this strategic mineral resource for future development.
• Because of the Prairie Evaporite deposits, Potash is no longer considered to be a US strategic mineral.
• In 1973, the US DOE condemned a 16 square mile area within the SE New Mexico Potash Area as a Waste Isolation Pilot Project (WIPP) for storage of radioactive waste.

After Baker and Gundiler, 2008

dgh@hillpetro.com
SE New Mexico

McNutt Member, Salado Formation

South East New Mexico McNutt Member, Salado Formation Major Components

<table>
<thead>
<tr>
<th>Mineral Name</th>
<th>Formula</th>
<th>Crystal Class</th>
<th>%K</th>
<th>Equivalent % K₂O</th>
<th>Gamma Ray (API)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sylvinite</td>
<td>KCl</td>
<td>Isometric</td>
<td>53.45</td>
<td>63.18</td>
<td>953</td>
</tr>
<tr>
<td>Langbeinite</td>
<td>K₂SO₄(MgSO₄)₂</td>
<td>Isometric</td>
<td>18.84</td>
<td>22.70</td>
<td>342</td>
</tr>
<tr>
<td>Carnallite</td>
<td>KCl·MgCl₂·6(H₂O)</td>
<td>Orthorhombic</td>
<td>14.07</td>
<td>16.95</td>
<td>256</td>
</tr>
<tr>
<td>Kainite</td>
<td>MgSO₄KCl·3(H₂O)</td>
<td>Monoclinic</td>
<td>15.07</td>
<td>18.92</td>
<td>285</td>
</tr>
<tr>
<td>Leonite</td>
<td>K₂SO₄MgSO₄·4(H₂O)</td>
<td>Monoclinic</td>
<td>21.32</td>
<td>25.69</td>
<td>386</td>
</tr>
<tr>
<td>Polyhalite</td>
<td>K₃PO₄MgSO₄(CaSO₄)·2(H₂O)</td>
<td>Triclinic</td>
<td>12.97</td>
<td>15.62</td>
<td>236</td>
</tr>
<tr>
<td>Anhydrite*</td>
<td>CaSO₄</td>
<td>Orthorhombic</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gypsum</td>
<td>CaSO₄·2(H₂O)</td>
<td>Monoclinic</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Halite</td>
<td>NaCl</td>
<td>Isometric</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kieserite**</td>
<td>MgSO₄·(H₂O)</td>
<td>Monoclinic</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Marker Beds</td>
<td>Variable</td>
<td>-</td>
<td>??</td>
<td>??</td>
<td>Variable</td>
</tr>
<tr>
<td>Claystones</td>
<td>Variable</td>
<td>-</td>
<td>Variable</td>
<td>??</td>
<td>??</td>
</tr>
</tbody>
</table>

*While the mineral, Anhydrite, is not radioactive, the Union anhydrite and other SE NM “Anhydrite Beds have GR signatures equivalent to or higher than, Potash “Ore Zones”.

Commercial Potash Minerals in Red.

Non-Commercial Potash Minerals in Black.

Non-Potash Exposite Minerals in Violet.

dgh@hillpetro.com
Potash Mineral GR Relationships

- 100% Potash Mineral API - %K₂O Relationships are Linear
SE New Mexico Linear Gamma-Ray Log API to “Apparent Total %K₂O” Transform

![Graph showing the relationship between Gamma Ray and K₂O content.](image)

Equation:

\[\%K_2O = 1.2577 \times 4.525 \]

\[R^2 = 0.858 \]

\[\sigma = +/- 3.686 \]
Core Hole (on left) is approximately 200 ft. West of the Well (on right).

dgh@hillpetro.com
Validation Test: Cased Well Predictions vs. Corehole XRD Assays

<table>
<thead>
<tr>
<th>Potash Ore Zone</th>
<th>Mining Co Cased Well Log Predictions</th>
<th>Corehole Assay Analysis</th>
<th>% Error of Log Predicted Grade x Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thickness (ft)</td>
<td>Grade (%K₂O, S/L)</td>
<td>Grade x Thickness (%K₂O/ft, S/L)</td>
</tr>
<tr>
<td>10c</td>
<td>5.4</td>
<td>29.0 S</td>
<td>156.6</td>
</tr>
<tr>
<td>8A</td>
<td>5.1</td>
<td>4.0 S</td>
<td>20.4</td>
</tr>
<tr>
<td>6</td>
<td>2.5</td>
<td>16.0 S</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>5.3</td>
<td>14.0 S</td>
<td>74.2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>26.0 L</td>
<td>104</td>
</tr>
</tbody>
</table>

L = Langbenite S = Sylvite

- Predicted Potash grades and thicknesses from well Cased-Hole Gamma Ray and Neutron Logs are Significantly Greater than the Core XRD Assays, for the same “Ore Zones”.
- *Potash Grade-Thickness Estimates From Well Logs Are Not Reliable, Greatly Exceeding the Maximum “Measured Ore” Error of 20% Required for Mapping Potash Reserves.*
Natural Radioactive Isotopes

- ^{40}K to ^{40}Ar decay
- ^{238}U Decay Series (primarily ^{214}Pb and ^{214}Bi decays)
- ^{232}Th Decay Series (primarily ^{212}Pb and ^{212}Bi decays)

After Serra et al., 1980
SE New Mexico
K-U-T vs. Total Count GR Logs

- **Comparison of Total Count and K-U-T Gamma Ray Log**
- Gamma Ray responses in McNutt Member of Salado Formation, SE New Mexico.

- **The 747 – 749 ft Non 40K total count GR anomaly is comparable to that of the 752.5 – 754.5 ft Polyhalite (Non-Economic Potash) anomaly.**

After Fertl, 1979

K-U-T GR separates 40K from U & Th Series

BUT not Commercial Potash from Non-Commercial Potash

dgh@hillpetro.com
Saskatchewan Prairie Evaporite Potash Deposits Extent

- Prairie Evaporite Potash Deposits underlie roughly the SE 25% of the Province of Saskatchewan and extend into Northern North Dakota.

After Holter, 1969

dgh@hillpetro.com
Saskatchewan Prairie Evaporite

“The Saudi Arabia of Potash”

- Discovered during the 1940’s and have been continuously produced 1962.
- Very simple (distinct Sylvite and Carnallite, with minor Dolomite and claystones) mineralogy and structures.
- Massive (up to 15 m, or 50 ft, thick), high grade (up to over 50% Sylvite, or KCl), uniform (can correlate over several miles, using seismic reflection techniques) and extensive (see map).
- Supplies 25 – 30% of world demand (with reserves for several hundred years, at this level) and 70% of U.S. demand.
- Because of this, near-by, stable supply, Potash is no longer considered to be a U.S. “Strategic Mineral”.

dgh@hillpetro.com
Saskatchewan Prairie Evaporite
Detailed Wireline Logs & Core Assays

Logs

Core
Assay

Log Assay
Estimates

After Crain and Anderson, 1966

dgh@hillpetro.com
Saskatchewan: Prairie Evaporate
Gamma Ray - SNP Cross-Plot

GR-SNP Cross-Plot groups data, quite nicely into three distinct groups
Cape Breton Island Windsor Evaporite Overview

• Complex structural setting.
• Very simple mineralogy.
• Massive, high-grade, but ephemeral, Sylvite ore zones, with little contamination.

After Giles, 2014
Cape Breton Island Windsor Evaporite Mineralogy

• Commercial Potash Mineral:
 ➢ Sylvite.

• Non-Commercial Potash Mineral:
 ➢ Carnallite (minor amounts).

• Other Evaporite Minerals:
 ➢ Anhydrite (trace - minor amounts).
 ➢ Gypsum (trace - minor amounts).
 ➢ Halite.

• Other Materials
 ➢ Shales (minor amounts).
Cape Breton Island Windsor Evaporite Multi-Log and Core Analysis Assays

Core Assay (LHS) and Multi-Log Assay mirrors the wireline data.

After Hill, 1993

dgh@hillpetro.com

Slide 19
Cape Breton Island Windsor Evaporite
Gamma Ray - CNL Cross-Plot

• GR-Neutron Cross-Plot groups the data into three groups, with a transition between the low-grade Potash ore and barren zones
• There is essentially no clay or non-commercial potash
SE New Mexico
McNutt Member Salado Formation

• Very complex mineralogy.

• Thin (less than 10 ft. thick), ephemeral, low-grade Sylvite, Langbeinite, & mixed Sylvite/Langbeinite ore zones, containing significant thinly bedded impurities of claystones, non-economic Potash minerals and/or non-potash evaporites.

• Both vertically and aerially heterogeneous, due to non-commercial potash minerals, other evaporites, marker beds, anhydrite beds, and claystones.

• *Marginal, at best.*

• The potash mineral most commonly identified in the USDOE Waste Isolation Pilot Plant (WIPP) well core descriptions was non-commercial *Polyhalite.*
Regional Stratigraphic Column of the SE New Mexico Potash Area with Expanded Sections of the Ochoan Evaporite and the McNutt Member of the Salado Formation Showing Correlation of USGS Marker Beds with Potash Ore Zones (modified from Griswold, 1982)

For example:
The 10th potash ore zone is located between marker beds 119 & 120.
SE New Mexico Potash Area Example: AEC-8

- Salado Formation, containing the McNutt Member has 49 Marker Beds

- Many non-potash marker beds have gamma ray values (≤ 180 API) comparable to, or greater than, the 11 potash ore zones, in the McNutt Member.

- **All potash ore zones, in AEC-8, are less than 8 ft thick.**
SE NM McNutt Member
AEC-8 Gamma Ray - CNL Cross-Plot

- All of the data:
 - Marker Beds
 - 8th, 10th, & 11th “ore zones”
 - Union Anhydrite

- Plot along the Polyhalite-Anhydrite/Halite line.

- **Cannot distinguish between the above three groups.**

- **There is NO Commercial Grade Potash in this well**
SE NM Cased Oil Well

- Only one potentially commercial interval.
- Ore Zone 3:
 - Most Probably low-grade Langbeinite
- All other Ore Zones are either:
 - Potash free, or:
 - Non-commercial potash minerals.
Post Mortem

- The mineralogy of the McNutt Member of the Salado Formation, in SE New Mexico is too complex for a simple log to core transform.
- There are too many mineral/rock species, in the McNutt Member of the Salado Formation, to be able to use linear programming or multi-mineral analyses techniques.
- Commercial potash minerals are anhydrous.
- The “Marker Beds”, claystones, & non-commercial potash minerals, in the McNutt Member of the Salado Formation, all have significant water content.
- The Simple Potash Identification Cross-Plot, can be used to screen both cased and uncased wells, for potentially commercial potash mineralization.
Questions?

dgh@hillpetro.com
Citations