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Abstract 

 

A method of compensation for the presence of discrete shallow velocity anomalies (SVAs) has been developed. When the first breaks approach 

fails for any reason (first breaks are hard to pick, there is a shallow low velocity layer, permafrost etc) the only seismic information available is 

deep reflections. Shallow velocity anomalies cause large lateral variations in stacking velocities increasing with depth. Dix’s formula gives us 

interval velocities in 1-D media. In many cases, the 1D assumption does not work, especially when we have local velocity anomalies in the 

overburden. Not only do they reduce post-stack image quality, but also create large differences in stacking velocity behaviour for deep seismic 

reflectors with small dips. A non-fist-breaks technology provides us tools to determine shallow velocity structures and remove their influence 

on stacking velocities and imaging. This technology includes four main steps: (i) High-density automatic non-hyperbolic NMO picking, (ii) 

Analytical NMO inversion to estimate shallow velocity structure, (iii) Non-linear horizon based traveltime tomography to improve depth 

velocity model and (iv) time-dependent velocity replacement corrections for prestack data. Model and real data examples show the practical 

feasibility and robustness of the proposed approach if there are deep consistent reflections. 

 

Possibility of Simple Shallow Velocity Description 

 

Conventional approach to deal with SVAs utilizes first breaks to determine shallow velocity structures (Hampson and Russell, 1984, Yilmaz, 

1987, Taner et al., 1998, Cox, 1999). The presented approach deals only with deep reflections, which are supposed to be quite consistent. It is 

based on some theoretical results relating to NMO Dix’s type inversion for a medium with curvilinear boundaries and laterally changing 

velocities. To describe SVAs, we use one layer with a laterally changing interval velocity. Because we do not use first breaks, a question arises: 

can we use this simple description of shallow velocity structures while they may be much more complicated, including several inhomogeneous 

curvilinear layers? It can be proved theoretically that for a subsurface with modest structures we can use a simple one-layer shallow velocity 

model to describe it such that vertical times in this layer will be very close to those of the initial complicated model. 

 

The proof is based on an approximate formula derived by Blias (2005a, 2005b) for the NMO velocity: 
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Here Vm is an interval velocity in the m
th

 layer, sm=1/vm is the slowness in the same layer, hm is the thickness, VAVEm is an average velocity 

between the anomaly depth Fm and the reflector depth H; F(x) is an average of anomaly depths and VAVE is an average velocity between F and 

H. Let us consider the shallow portion of the subsurface with a horizontal bottom boundary. We assume that an adequate velocity model for 

this layer should be described with several curvilinear inhomogeneous layers. Let n be the number of the layers in this shallow part, Fk(x) be 

the boundary and vk(x) be the interval velocity in this layer. Then the vertical time in this shallow structure is given by the formula: 

 

 
 

We substitute all these n layers with one with the same bottom boundary H and with the slowness s(x). For static correction purpose, we want 

the zero-offset times to be the same. Since the zero offset time in the substitute layer is Hs(x) then from (2) it follows that slowness s(x) in this 

new layer satisfies the equation: 

 

 
 

After differentiating this equation two times, we come to the connection between the second-order derivatives of the two forms: 

 

 
 

For the model with a horizontal shallow layer with slowness, s(x) formula (1) becomes: 

 

 
 

Comparing formulas (1) and (4) and taking into account formula (3), we see that both SVA descriptions give close NMO velocities. This can 

be confirmed by modeling. The fact that, for deep reflections, we can replace complex shallow velocity structure with one shallow layer with 



laterally changing interval velocity plays an important role in the non-first-break approach for determination of SVAs and removing their 

influence. 

 

Main Steps of Non-First-Breaks Technology 

 

Let us consider the main steps of the technology. 

 

1. High-density NMO picking. Because SVAs cause strong lateral fluctuations of deep stacking velocities (Blias 1981, 1988, 2005a, 2005b), 

we need high-density velocity picking. Here the final goal is to pick NMO functions regardless of their shape. NMO information will be used 

to build depth velocity model including SVAs. We solve this problem with two steps. First we run constrained hyperbolic velocity analysis 

based on coherence semblances. The distinguishing feature of this step is that one has to manually pick velocities at one CDP gather. After that 

the program will automatically (using some constraints) find stacking velocities for each CDP point within a moving time window where 

possible. Picked velocities are interpolated to each time sample and smoothed. After that, picked hyperbolic NMO functions are applied to 

CDP gathers and NMO gathers are stacked. Then, one picks horizons and applies horizon-based residual non-hyperbolic moveout. Finally, we 

have NMO curves for several (picked) horizons that will be used in non-linear traveltime inversion. 

 

2. Analytical NMO inversion to create a zero approximation for depth velocity model. For this, we use stacking velocities after the first 

velocity hyperbolic analysis. First, we determine a shallow velocity model using the method derived by Blias (2005c). After that, we use a 

generalization of the Dix formula a layered medium with lateral varying velocities (Blias, 2003). It allows us to determine the initial depth 

velocity model with curvilinear boundaries and laterally inhomogeneous layers. 

 

3. Travel-time inversion and depth velocity model improvement. We use non-hyperbolic travel-times to build a depth velocity model, including 

shallow velocity structures. For this, we use an optimization approach (Blias and Khatchatrian, 2003). We describe interval velocities and 

boundaries as the sum of some reference (known) functions and linear combinations of basis functions with the coefficients to be found from 

minimizing an objective function. To find a minimum of the non-linear function F, we use the Newton method. 

 

4. Velocity anomaly replacement (VAR). We use the depth velocity model to remove the influence of the SVA. For a given shallow velocity 

model it can be done by forward and reverse pre-stack wavefield extrapolation (Wapenaar and Berkhout, 1985). We use time-variable time 

shifts to remove the SVA effects, which is less expensive. For this, we run raytracing for the obtained depth velocity model and calculate 

prestack reflection time arrivals for all boundaries. Then we replace the shallow inhomogeneous layer with a homogeneous one and calculate 

time arrivals for this model. The difference between the first and the second set of times is applied to the CDP gathers. This procedure moves 

events on pre-stack data to the position where they would be if the shallow layer were homogeneous (Blias et al., 1985). 

 

Model Data Test 

 

Let us illustrate the above technique on model data. We test this approach on model data with modest deep structures. We will see that the 

suggested approach is stable and allows us to restore the depth velocity model when we have complicated SVA, caused by several curvilinear 



boundaries and laterally inhomogeneous layers. Figure 1a shows a depth velocity model boundaries and interval velocities are displayed on 

Figure 1b. Red lines display interval velocities in the three shallow layers. From these figures, we see that the shallow part of the subsurface is 

complicated. The bottom of this shallow part is at 300m. Above this boundary, there are three curvilinear layers with laterally changing interval 

velocities. Average velocity in this layer is 1600 m/s. For this model synthetic CDP gathers have been calculated with maximum offset/ 

reflector depth = 1.5. Shot interval = receiver interval = 32 m. All five steps of the described technology have been run on this synthetic data. 

Figure 2a shows a velocity grid after automatic continuous velocity analysis. We see large lateral stacking velocity fluctuations increasing with 

depth. 

 

An initial shallow velocity model was built, using method developed by Blias (2005b). We put h1 = 240m and average velocity in the first 

layer 1200m/s while h1 is 300m and average velocity in this layer is 1600 m/s. Here h1 is a thickness of the first layer. This means that we used 

wrong a priori parameters for the first layer to prove that it should not have much influence on the result of velocity anomaly replacement. 

 

Figure 3 shows initial velocity in the first layer (red) and after optimization (brown). Except modest difference in shape, there is a constant shift 

because during traveltime inversion optimization we also changed the thickness of the first layer. 

 

Because we took a wrong value for the bottom of the first layer with velocity anomalies (240 m instead of 300 m), the recovered velocity in 

this layer differs from the original average velocity. As was mentioned above, the vertical time should be found with reasonable accuracy. 

Figure 4 shows vertical times for the original model (blue) and for the model after traveltime inversion (brown). After we determined the 

interval velocity in the first layer, we use a generalization of Dix’s formulas (Blias, 2003) to find interval velocities for the other layers. The 

results of these calculations give us an initial depth velocity model, which is needed for optimization-based traveltime inversion. To improve 

this model, traveltime optimization inversion was applied using non-hyperbolic traveltimes extracted after residual velocity analysis (Blias and 

Khatchatrian, 2003). Figure 5 shows boundaries of the initial model (brown) and after optimization traveltime inversion (blue). We see 

acceptable similarity between them. All structures were recovered correctly despite a wrong thickness of the first layer. 

 

The model after traveltime inversion was used to calculate VAR corrections. These corrections were applied to the CDP gathers. They 

transform moveout curves to hyperbolic ones. Strictly speaking, new NMO curves are better approximated with hyperbolas than the original 

ones. VAR significantly removed non-hyperbolic distortions caused by shallow anomalies. VAR also significantly improved the velocity grid 

(Figure 2b) and structural imaging. Figure 6 shows poststack sections before (a) and after (b) VAR. We can see that after the VAR poststack 

data looks much more similar to the depth velocity model. From this, we conclude that, for the shallow part of the section, utilization of a 

laterally inhomogeneous layer instead of a complicated velocity model is acceptable. It allows us to restore SVA using deep reflections and to 

eliminate their influence on prestack gathers with sufficient accuracy. 

 

Real Data Example 

 

Let us demonstrate this approach on a real data example. This data has been obtained in an area where first breaks were very hard to pick. 

High-density non-hyperbolic constrained velocity analysis has been performed on CDP gathers. Figure 7a shows stacking velocities after 

automatic continuous constrained velocity analysis. We can see two anomalies in the interval 12-17 km, which caused large lateral variations 



of stacking velocities from deep boundaries. The above inversion approach has been applied to stacking velocities. The horizon-based 

traveltime inversion was run using time arrivals as input data. Figure 8 shows depth velocity model obtained after traveltime inversion with two 

shallow velocity anomalies (red arrows in Figure 8b). Comparing Figure 8 a and b we see that after VAR stacking velocity show much less 

lateral variations, Figure 4b. Post-stack sections are shown in Figure 9. We see that VAR improved velocity grid and post-stack images. 

 

Conclusions 

 

To eliminate SVA effects, a non-first-break method has been presented. It uses a laterally inhomogeneous layer to describe the shallow part of 

the subsurface. To find the shallow velocity model, we use deep reflections picked after automatic high-density constrained velocity analysis. 

Stacking velocities are converted to a zero-approximation depth velocity model, which is improved by travel-time optimization inversion. 

Velocity replacement time-variant correction are calculated and applied to prestack gathers. This allows us to significantly remove the 

influence of SVAs on prestack data and to obtain more reliable images. 
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Figure 1. Depth velocity model boundaries (a) and interval velocities (b). 



 
 

Figure 2. Velocity grid before (a) and after (b) VAR. 



               
 

Figure 3. Velocity in the first layer after analytical inversion (red) and optimization (brown). 
 



                      
 

Figure 4. Vertical times in the first layer for initial model (blue) and recovered model (brown). 



       
 

Figure 5. Boundaries of original model (brown) and after time-inversion (blue). 



 
 

Figure 6. Poststack sections before (a) and after (b) VAR. 



 
 

Figure 7. Stacking velocities before VAR (a) and after (b). 



  
 

Figure 8. A) Boundaries figure; B) interval velocities. 



 
 

Figure 9. Poststack data: a – before VAR, b – after VAR. 


