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3D Seismic AVAZ Ambiguities 

 
AVAZ interpretation for fracture attributes can be established by models using theory based on HTI anisotropy (horizontal transverse isotropy). 
However, comparing Figures 1 and 2 show opposing predictions for both the orientation and intensity of anisotropy with no single and obvious 
guiding principle. The Williams and Jenner model (2002) (Figure 1) is compelling as it logically explains the expected weaker 3D stack 
response to fractures. This is due to a decreasing (negative) gradient perpendicular to fractures, while the isotropic or parallel case has a flat 
gradient and hence a strong stack response in areas where no fractures exist. By contrast industry’s AVAZ model prediction, shown in Figure 
2, is exactly opposed as the relative stack response would be stronger perpendicular to fractures than the isotropic or fracture parallel 
equivalent. It is interesting to note that this lack of generality is unlike the isotropic AVO type gradient classification (Rutherford and Williams 
1989) that is diagnostic of changes in Vp/Vs ratio. 
 
A better understanding of these ambiguities requires some investigation into the theory primarily developed by Ruger (Ruger and Tsvankin, 
1997). Figure 3 shows the azimuthal AVO gradient variation for two models with different anisotropic parameters, from Ruger’s paper, that are 
based on his equation and from which the following observations can be drawn:  

1. The magnitude of the gradient variation with azimuth is much smaller than the basic isotropic AVO gradient despite a realistic choice of 
values for anisotropic parameters between 8% and 15%. 

2. The magnitude of gradient variation with azimuth shown by model examples in Figures 1 and 2, are significantly larger than those 
predicted by Ruger’s equation even to the point of reversing the sign of the gradient (compare Figures 2 and 3). 

3. The relative stack response from a fractured vs. isotropic layer can be consistent or at odds with one’s intuition (compare Figures 1, 2, 
and 3).  

4. The zero offset reflection has no azimuth variation. 
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Anisotropic AVO Theory and Models from Ruger’s Equation 

 
Inversion for P-wave anisotropy follows from isotropic AVO by utilizing Ruger’s anisotropic reformulation of the Aki and Richards linearized 
equation for P-wave reflectivity with incidence angle (Aki and Richards, 1980) and is based on a simple HTI model of vertically aligned 
fractures, as shown in Figure 4. 
 
The HTI model is identical in its transverse isotropy (TI) to the more familiar vertical transverse isotropy (VTI) model for horizontal layers, 
e.g., shales. However, for the HTI model both ε and δ (VTI case) undergo a transformation to ε(v) and δ(v) where (v) denotes a vertical axis 
reference due to the 90° symmetry axis rotation from their VTI equivalents as given in equation 1. 
 

 
 
Consequently, these HTI parameters ε( ) and δ(v) along with the VTI γ, appear in Ruger’s HTI AVAZ reflection equation for azimuth angles  
between the principal symmetry axis plane and isotropic plane as shown in equation 2. 

 



For the isotropic plane, equation 2 follows from the Aki and Richards equation and is based on vertical fractional contrasts or reflectivity in 
density Δρ/ρ P-wave velocity Δα/α and rigidity Δμ/μ (Wang, 1999; Goodway, 2001). However, Ruger chose the approach of Shuey (Shuey, 
1985) by gathering the Δα/α, Δε(v) and Δδ(v) terms with significant contrast (Ciso Caniso), into the third higher order incidence angle sin2θ tan2θ 
term. The consequence of this is similar to the isotropic case where both AVO and AVAZ equations do not have the critical curvature 
discrimination at high incidence angle when used in industry practice as two term approximations (see Figures 5a and 5b). However the relative 
contribution of the 2nd vs. 3rd term is far worse of a problem in the AVAZ case. This leads to fundamental ambiguities and hence errors 
involved in azimuthal anisotropy inversion. It also explains the wide variation and confusion in observation or interpretation of AVAZ effects 
in data and model examples shown above and in the literature (Goodway et al., 2006). 
 
Using values established from logs in the case study area, Figures 5a and 5b, show the AVAZ curve variation with incidence angle from 
parallel (isotropic plane) to perpendicular (symmetry axis plane) for a two layer isotropic/HTI model, comparing the two term (A and Bsin2θ) 
Shuey type approximation as used in practice, to the full three term Ruger equation 2. 
 
The following observations can be drawn: 

1. The full 3 term curves are similar to those shown by Ruger for gas filled fractures with similar HTI parameters γ = 0.085, εv =-0.15 and 
δv = -0.155, (Figure 3), where very little separation can be seen between the curves for varying azimuth for incidence angles up to 35º. 
However, at reasonably large angle ranges between 35º to 45º, discrimination between azimuths is possible due to the curvature in the 3 
term equation. The curvature diminishes with decreasing azimuth angle  from parallel to fractures (isotropic plane) to perpendicular or 
across fractures (symmetry axis plane). 

2. The two term approximation used in practice shows a large and opposed separation in azimuth AVO curves for most of the incidence 
angle range from 20º to 45º and is unable to match the critically diagnostic 3 term curvature beyond 35º. 

3. The most startling observations are that using a 2 term Shuey approximation to fit the actual 3 term measurement would produce a 
result that showed no azimuthal anisotropy for angles less than 35º and the wrong opposed 90º fracture azimuth for angles greater than 
35º. 

 
The reason for these observations is that the 2nd term in Ruger’s equation is reduced in significance below θ = 35º incidence angle, as a result of 
the Baniso term having anisotropic parameters γ and δ(v) with opposing sign (see equation 1). Consequently, the 3rd high incidence angle term 
(Ciso Caniso in equation 2) has more impact on the azimuthal gradient and cannot be ignored. In fact in a yet more ambiguous way a “cross-over” 
angle occurs at 33.9º where for θ < 33.9º the “parallel to fractures” (isotropic) azimuth AVO curve is below that of the “perpendicular to 
fractures” (symmetry axis plane) curve and reverses this sense for θ > 33.9º with a greater, more visible separation (see Figure 5a). 
 
Given the importance of the 3rd term in Ruger’s equation, a better approach would be to rewrite the equation in three terms of equal 
significance. The result, shown in equations 3 and 4, has a zero incidence angle term in Δα/α and two isotropic/anisotropic terms in sin2θ (with 
Δμ/μ) and tan2θ (with Δα/α). For the elliptical gas filled fracture case the underlying physical connection of the impact of the HTI anisotropic 
parameters Δε(v) (-ve sign) and Δγ (+ve sign) can be seen as respectively reducing the isotropic AVO gradient terms for Δα/α and Δμ/μ, as these 
are the parameters associated with the P-wave phase velocity and shear-wave splitting due to fractures (see equation 4). 



 
 
A relatively robust 3 term method for inversion of azimuthal anisotropic parameters based on equation 4 would exploit the separation between 
the 2nd term’s tan2θcos2  surface and the 3rd  term’s sin2θcos2  surfaces shown in Figures 6a and 6b. 
 
A relatively robust 3 term method for inversion of azimuthal anisotropic parameters based on equation 4 would exploit the separation between 
the 2nd term’s tan2θcos2  surface and the 3rd term’s sin2θcos2  surfaces shown in Figures 6a and 6b. 
 

Conclusions 

 
Seismic 3D AVAZ used to detect anisotropy due to fractures or stress offers the only opportunity to directly identify fracture-prone zones prior 
to committing to significant horizontal well drilling costs. This article describes the anisotropic AVAZ method that can be applied to map and 
predict optimal drilling locations. Beyond describing standard industry AVAZ practice, some fundamental theoretical and practical ambiguities 
of the method to correctly detect the orientation and intensity of anisotropy are revealed. Through an understanding of these ambiguities, 
constraints can be placed on the method as demonstrated by 3D case studies from the WCSB, and a new approach and set of equations are 
developed that improve the ability of the technology to establish the presence of fracture prone zones and hence optimum gas recovery. 
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Figure 1. AVAZ variation with stack response: - parallel is strong (flat to +ve gradient); - perpendicular is weak (-ve gradient); a) from 
Williams and Jenner (2002). 

 



 
 
Figure 2. Amplitude variation in HTI medium as advertised by contractor industry. (polar azimuth plots of gradients, modelled from Ruger’s 
AVAZ equation). 
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Figure 3. Ruger’s (Ruger and Tsvankin, 1997) models based on his linearized 3 term azimuthal AVO gradient equation. 
 



 
 

Figure 4. Model of HTI media used in Ruger’s 1997 AVAZ P-wave reflection equation showing anisotropic conversion to shear-waves for 
principal and non-principal planes of symmetry. 
  



 

 
 

Figure 5. 5a and 5b: 3D displays of Ruger’s 3 term vs. 2 term (Shuey, 1985) equation of azimuthal AVO curves. 
  



 
 

 
 

Figure 6. 6a and 6b: 3D displays of new 3 term AVAZ equation 4: 6a is the 2nd term and 6b is the 3rd term. 
 
 
 


