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Abstract 

 

Standard models for initiation of continental rifting show normal faults nucleating and growing to form isolated hangingwall 

depocentres that enlarge and merge due to lateral fault propagation and linkage. Sedimentation rates are usually higher or equal 

to accommodation during the early, pre-linkage phase with footwall-derived consequent drainage systems supplying fluvial to 

lacustrine sediments. However, these models do not consider the impact of antecedent river systems on facies and thickness 

distribution in early rifts. Stratigraphic and sedimentological analysis of the Pliocene-Recent Corinth rift is here used to 

understand the architecture of early rift alluvial/fluvial systems from source to sink. In the northern Peloponnese, these are 

preserved in a series of uplifted E-W normal fault blocks incised by present-day north-flowing rivers. By correlation of fluvial 

successions across normal fault blocks, we propose a new sedimentary model for early rifting. The use of magnetostratigraphy 

and the determination of burial age using cosmonuclides 26Al/10Be give temporal constraints along four logs. The early rift 

fining-upward succession thickens and fines from west to east across normal fault blocks. A basal conglomeratic unit infilled an 

inherited paleotopography. Palaeocurrent and sedimentological data indicate that an antecedent drainage system provided high 

sediment supply since the onset of rifting. Fluvial sediments were deposited by a NE-flowing low sinuosity gravel-braided river 

system. Earliest normal faults are sealed by syn-rift sediments as displacement became focused on larger normal faults (15–20 

km long, across-strike spacing of >4 km). Little or no consequent sediment supply has been detected and therefore significant 

footwall relief was not created during early rifting. Spatial variability of facies records displacement gradients along faults. For 
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example, coarse alluvial conglomerates tend to occur in the centre of hangingwall depocentres while finer floodplain deposits 

accumulated along strike. At the rift scale, however, normal fault distribution and activity do not solely control facies 

distribution, being overwhelmed by high sediment discharge of the antecedent river. We develop a tectono-sedimentary model 

of normal fault growth and potential fluvial-lacustrine reservoir distribution in early rifts with high S:A ratios that involve 

antecedent drainage systems and distributed normal faulting. 
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Rivers and rifting: 
 Evolution of a fluvial system during rift 
initiation, central Corinth rift (Greece)



Normal fault system initiation Fault propagation and linkage

Tectono-sedimentary model of early rift phase

!
	
  (modified	
  from	
  Cowie	
  et	
  al.,	
  2006).

• Tectono-sedimentary models of the 
early rift are based on footwall-derived 
sediments. 

• Syn-rift sedimentation is the direct 
response to tectonic activity. 

• The role of the inherited drainage 
system is not considered.

!
	
  (Gawthorpe	
  &	
  Leeder,	
  2000).



10’s km

• Implications of a major antecedent drainage system: 

  —  Presence of a paleotopography;  
  —  High sediment supply at rift initiation. 

• How do rivers respond to the development of normal fault system? 

• How important is it for syn-rift facies distribution and characterization 
of petroleum reservoirs?

Importance of antecedent drainage system



Study area: southern margin of the Corinth rift

• Inactive and uplifted fault blocks provide good exposures of the early rift deposits. 

•  The gulf of Corinth mostly defines the seismically active part of the rift.



Structural style in the syn-rift deposits

• Incision by the present day rivers provides exposure of the early syn-rift deposits. 
• Growth strata along the north-dipping faults: syn-sedimentary tilted block or 

forced folds.



Onshore stratigraphy in the central Corinth rift

!
	
  (Leeder	
  et	
  al.,	
  

2012)

• The Lower group fluvial system evolve from SW to NE, from coarse alluvial 
conglomerates and fluvio-deltaic deposits. 

• Middle group deposits mark the onset of basin deepening in the central rift. 
• In the eastern rift, basin deepening occurs during early rift stage.

Central riftWestern rift Eastern rift

? 

? 



Lower group stratigraphy

Approach and methods: 
• Facies analysis and distribution in the study area; 
• Correlations between fault blocks by combining lithostratigraphy and age constrains. 
• Stratigraphic controls: magnetostratigraphy, palynology, rats teeth. 



Lower group stratigraphy
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Paleogeographic reconstructions: STAGE 1
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Paleogeographic reconstructions: STAGE 2
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50–80% of sand and silt preserved 
within the Ladopotamos formation
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Paleogeographic reconstructions: STAGE 3
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Paleogeographic reconstructions: STAGE 4
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• Sediment supply is dominated by a large-scale antecedent drainage 
system. 

• Limited evidence of local footwall-derived sediments during rift 
initiation. 

• The fluvial depositional system extends > 50 km across several active 
tilted fault blocks. There is no existing facies model at this scale.  

• Grain size and facies variations do not occur at the scale of individual 
fault blocks  (5–10 km) but at the scale of the antecedent fluvial system. 

• During rift initiation times, the main axis of fluvial transport crosscuts 
the major faults and remains constant. 

• These observations from the Corinth rift emphasize the role of antecedent 
drainage systems in the tectono-stratigraphic evolution of rift basins.

Conclusions


