Abstract

The oil and gas exploration and production industry is one of the world’s largest industries, and the industry has cycled through many changes since retired railroad conductor Edwin Drake struck oil in 1859 in Titusville, Pennsylvania, and touched off the modern oil industry. There may be no other industry today that demands a more diverse set of human, technological, scientific, and political capabilities than the oil and gas exploration and production industry. Competition for natural resources has driven companies to explore and produce in harsh, remote and even hostile locations and to develop modern technologies to overcome and develop the modern era of the industry. Also, as the environment grows more diverse and unforgiving and the challenges more complex, the skilled prospectors are aging and are growing scarce. Currently the industry is seeing an upturn, but with price fluctuations, industry and technology challenges, the industry has seen its share of good and bad times. As the oil and gas industry evolves into this next phase of oil and gas development, a phase predicated by the use of closely spaced horizontal wells that are drilled into low-permeability formations, the extraction of oil and gas are enhanced with the application of hydraulic stimulation (or permeability enhancement). Yet, there are many new obstacles to overcome.

For the first of many decades, the industry was focused on generating individual prospects for developing oil and gas. Early oil and gas prospectors would take geologic ideas, do the research, expand and map the prospects, acquire geophysical support data, seek approvals, acquire leases and then permit and drill the wells. As completion technologies have changed (i.e., hydraulic stimulation), the modern prospector appears to be going by the way-side; or has the prospectors job changed? What technologies are expected from this change in the industry and how does this affect the modern prospect generator?

How does the industry maintain the skills for future prospect generators to be fostered, mentored, and matured? A look back at the industry timeline and a review of a few of the modern mega-giant unconventional resource plays may answer these questions and help advance prospectors for this and even the next age of the oil and gas industry.
Selected References

Practical Prospecting: The Past, Present, and Future

Tom Bowman

AAPG Playmakers Forum – Houston, Texas

January 2014
Forward-Looking Statements. This presentation and other written or oral statements made by or on behalf of ZaZa Energy Corporation (the “Company”) contain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. All statements, other than statements of historical fact, including without limitation, statements and projections regarding the Company’s future financial position, operations, performance, business strategy, returns, budgets, reserves, levels of production and costs, statements regarding future commodity prices and statements regarding the plans and objectives of the Company’s management for future operations, are forward-looking statements. The Company’s forward looking statements are typically preceded by, followed by or include words such as “will,” “may,” “could,” “would,” “should,” “likely,” “believe,” “expect,” “anticipate,” “plan,” “estimate,” “target,” “goal,” “project,” “plan,” “intend” and similar words or expressions. The Company’s forward-looking statements are not guarantees of future performance and are only predictions and statements of the Company’s beliefs based on assumptions that may prove to be inaccurate. Forward-looking statements involve known, unknown or currently unforeseen risks and uncertainties that may be outside of the Company's control and may cause the Company's actual results and future developments to differ materially from those projected in, and contemplated by, such forward-looking statements. Risks, uncertainties and other factors that could cause the Company’s actual results to materially differ from the expectations reflected in the Company’s forward-looking statements include, without limitation, the Company’s registered public accounting firm expressing doubts about its ability to continue as a going concern, the Company’s ability to raise necessary capital in the future, the effect of the Company’s indebtedness on its financial health and business strategy, whether the Company’s joint venture partners elect to move forward with subsequent phases of its joint ventures, the Company’s ability to maintain or renew its existing oil and gas leases or obtain new ones and any other factors or risks listed in the reports and other filings that the Company has filed and may file with the Securities and Exchange Commission (the “SEC”). Any forward-looking statements made by the Company in this presentation and in other written and oral statements are based only on information currently available to the Company and speak only as of the date on which they are made. The Company undertakes no obligation to update or revise any of its forward-looking statements, whether as a result of new information, future developments or otherwise.

Market & Industry Data. The market and industry data contained in this presentation and other written or oral statements made by or on behalf of the Company are based on management’s own estimates, internal company research, surveys and studies conducted by third parties and industry and general publications, and in each case, are believed by management to be reasonable estimates. The Company has not independently verified market and industry data from third party sources. This data is subject to change and cannot always be verified with complete certainty due to limits on the availability and reliability of raw data, the voluntary nature of the data gathering process and other limitations and uncertainties inherent in any statistical survey of market or industry data. As a result, you should be aware that market and industry data set forth herein, and estimates and beliefs based on such data, may not be reliable.

Cautionary Note. The SEC permits oil and gas companies, in their filings with the SEC, to disclose only proved, probable and possible reserves that meet the SEC’s definitions for such terms (and price and cost sensitivities for such reserves), and prohibits the disclosure of resources that do not constitute such reserves. This presentation and other written or oral statements made by or on behalf of the Company may contain certain terms, such as resource potential and exploration target size, that are by their nature more speculative than estimates of proved, probable and possible reserves and accordingly are subject to substantially greater risk of being actually realized. SEC guidelines strictly prohibit the Company from including such estimates in filings with the SEC. Investors are encouraged to consider closely the disclosure in our reports and other filings that the Company has filed and may file with the SEC, all of which are available on our website at www.zazaenergy.com or by written request to ZaZa Energy Corporation, Attn. Investor Relations, 1301 McKinney Street, Suite 2800, Houston, Texas 77010.
Cecil Green, one of the owners of GSI who was also a founder of Texas Instruments, once reminisced that geophysics was

"a perfect combination of technology and people. ... The high demands of science breed integrity, and modesty as well," he said. "Show me a geologist, a geophysicist who's brimming with ego, and I'll show you a probable newcomer to the business. Mother Earth has a way of quickly showing you you're always the upstart."

Cecil Howard Green (August 6, 1900 – April 11, 2003)
As I read the historical curve of the industry for North America it is now near the crest of maximum production. For a few years—three to five—the present rate of production will be maintained approximately, then the long gradual decline will come. Possibly the permanent decline in production will begin about the time the world's business relations will have entered a period of permanent recovery from the present disrupted conditions which prevail

. because the most evident places will have been tested, less promising ones will be tried—more failures will be encountered, profits will be lessened, and the financiers‘ enthusiasm for the oil business will decrease, but will be good for the next five or ten years.

. during this period excellently trained, experienced geologists will be in demand exclusively for geological work.

E. G. WOODRUFF
AAPG Bulletin – July-August, 1921
The size of Alaska is equivalent to the entire Eastern Seaboard spanning north to south from Maine to Florida and west to Tennessee.
West Texas

Delaware and Val Verde Basins, Texas
Eagle Ford et. Al.

Texas Eagle Ford - Eaglebine/Eagle Ford East Trend Map

Current East Texas Focus Area

High Pressure Oily

Black Oils grading to gas condensate

High Pressure Gassy

Gas Condensate (wet Gas Window)

Dry Gas Window

Cenomanian / Turonian Paleogeography 93.5Ma

LEGEND

SS Structure top of Buda Lime

Author: Thomas Bowman, August 2013
Historical Review of Eagle Ford

Wells Permitted and Completed in the Eagle Ford Shale Play May 2008

Well Legend
- 172 Permitted Locations
- 18 Completed Wells

Note: There are 172 permitted locations representing pending oil or gas wells, where either the operator has not yet filed completion paperwork with the Commission, or the completed well has not yet been set up with a Commission identification number.
Key Points

- Three Play Types can be defined across the Gulf Coast of Texas
- Mature Eagle Ford in Maverick Basin is dominated by carbonates, generally east of the San Marcos Arch
- East Texas Basin is dominated by Siliciclastic deposition from the Ouachita complex to the north
- The Siliciclastic formations include the Woodbine sands, Sub-Clarksville and the Harris Delta, Kurten Sand, Dexter Sand etc.
- The influx of siliciclastic rocks is interlaced throughout the entire Eaglebine section
First Eagle Ford Well?

Key Points

- Maverick County Well
- Drilled March 11, 1955
- IP 103 BOPD
- 28.6 degree API Oil
- Produced over 23 MBO
- Cored 7 sections of the Eagle Ford Shale
- DST 6 intervals recovering only Oil-cut Mud (20% Oil)
- Cores indicate oil shows across most intervals
- Good early indications of potential of Eagle Ford Shale potential
Key Points

- **Three Play Types can be defined across the Gulf Coast of Texas**
- **Mature Eagle Ford in Maverick Basin** is dominated by carbonates, generally east of the San Marcos Arch.
- **East Texas Basin** is dominated by Siliciclastic deposition from the Ouachita complex to the north.
- The Siliciclastic formations include the Woodbine sands, Sub-Clarksville and the Harris Delta, Kurten Sand, Dexter Sand etc.
- The influx of siliciclastic rocks is interlaced throughout the entire Eaglebine section.

Eaglebine/Eagle Ford Play
- Higher silt content
- Low resistivity log signature
- Generally East of San Marcos Arch

Mature Eagle Ford Play
- Higher carbonate content
- Higher resistivity log signature
- West of San Marcos Arch

Woodbine Sand/Silt Play
- Higher sand content
Key Points

- General log calculations can estimate the potential of the Eagle Ford Section in La Salle County, Texas
- A lot of penetrations, very active drilling area
- Gross interval 162’, Net interval of 138’ based on log Net pay of 106’
- High Liquids yield
- Primary target with high liquids yield
- EUR 403 MBOE
- GOR 1,650 scf/bbl
- Oil API 42°
Emerging Oil and Gas Plays – Americas

October 23-24, 2013, Denver CO

Key Points

- Three Play Types can be defined across the Gulf Coast of Texas
- Mature Eagle Ford in Maverick Basin is dominated by carbonates, generally east of the San Marcos Arch
- East Texas Basin is dominated by Siliciclastic deposition from the Ouachita complex to the north
- The Siliciclastic formations include the Woodbine sands, Sub-Clarksville and the Harris Delta, Kurten Sand, Dexter Sand etc.
- The influx of siliciclastic rocks is interlaced throughout the entire Eaglebine section

* Eagle Ford and Woodbine and equivalent productive wells posted
Key Points

- General log calculations can estimate the potential of the Eagle Ford section
- Eagle Ford Shale Gross interval of 74’ base on log Net pay of 42’
- Upper Eagle Ford Gross interval of 183’ based on log Net pay of 166’
- This Well has been on production for 19 months and has produced 120,073 Mbo and 0.75 BCFg
- EUR 391 MBOE
Key Points

- Three Play Types can be defined across the Gulf Coast of Texas
- Mature Eagle Ford in Maverick Basin is dominated by carbonates, generally east of the San Marcos Arch
- East Texas Basin is dominated by Siliciclastic deposition from the Ouachita complex to the north
- The Siliciclastic formations include the Woodbine sands, Sub-Clarksville and the Harris Delta, Kurten Sand, Dexter Sand etc.
- The influx of siliciclastic rocks is interlaced throughout the entire Eaglebine section

Eaglebine/Eagle Ford Play
- Higher silt content
- Low resistivity log signature
- Generally East of San Marcos Arch

Mature Eagle Ford Play
- Higher carbonate content
- Higher resistivity log signature
- West of San Marcos Arch

Woodbine Sand/Silt Play
- Higher sand content
Key Points

- General log calculations can estimate the potential of the Eagle Ford section
- Upper Eagle Ford Gross interval of 177’ based on log Net pay of 85’
- Eagle Ford Shale Gross interval of 194’ base on log Net pay of 99’
- This Well has been tested at over 650 BOPD and 3.5 MMCF/d
- EUR 651 MBOE
- Note the Lower Resistivity of the Shale Section
Key Points

- Three Play Types can be defined across the Gulf Coast of Texas
- Mature Eagle Ford in Maverick Basin is dominated by carbonates, generally east of the San Marcos Arch
- East Texas Basin is dominated by Siliciclastic deposition from the Ouachita complex to the north
- The Siliciclastic formations include the Woodbine sands, Sub-Clarksville and the Harris Delta, Kurten Sand, Dexter Sand etc.
- The influx of siliciclastic rocks is interlaced throughout the entire Eaglebine section

* Eagle Ford and Woodbine and equivalent productive wells posted
Key Points

- General log calculations can estimate the potential of the Eaglebine section below the Harris Delta
- A lot of penetrations, not a lot of full suite log combinations
- Upper section GIP ~ 30 BCFE / mi²
- Net interval of 290’ based on log
- Net pay of 90’
- High Liquids yield +/- 7,000 GOR
- Lower section GIP of ~50 BCFE / mi²
- Net interval of 275’ base on log
- Net pay of 140’
- Primary target with high liquids yield

Compliments of Schepel Petroleum Consulting Inc.
Multiple Productive Formations

BURK ROYALTY CO. LTD – ETHEREDGE #1, 42-225-31198, HOUSTON CO., TX

Vertical Options
- Austin Chalk
- Eagle Ford
- Woodbine/Harris Delta
- U Eaglebine
- L Eaglebine
- Buda
- Georgetown
- Kiamichi
- Edwards
- Paluxy
- Glen Rose A
- Glen Rose B
- Glen Rose C
- Glen Rose D
- Glen Rose E
- Glen Rose G

Horizontal Options

Oil
Gas
Scale and Fracing

The Washington Monument

The total Frac sand on the well with the highest IP in the Eagle Ford (EOG Burrow 5H) reported IP of 7,512 BOpd, 6,877 MCFpd, 1,378 BWpd (8,658 BPEpd) Completed with 15,763,048 lbs (7,881.5 tons) proppant over a lateral length of 5,340 ‘ (12,019-17,359) Proppant has a specific gravity of 2.65, meaning that it is 2.65 times heavier than water. So proppant weighs 2.65 kilograms per liter. The amount of sand used in the frac is a cube of proppant that is about 13.9 meters (about 45.6 feet) on each side. If you ground up the Washington Monument, it would frac about 11.5 wells by weight. Or by volume, the amount of sand used to frac the well is about 6 percent (1/16th) of the Washington Monument.

Figuring that the world has been producing gold at 50 million ounces a year for 200 years. (the Aztecs and the Egyptians produced a fair amount of gold for a long time) Fifty million ounces * 200 years = 10 billion ounces. Ten billion ounces of gold would fit into a cube roughly about 82 feet on a side. That means if you could somehow gather every scrap of gold that man has ever mined into one place, you could only build about one-half of the Washington Monument.
The total Frac sand on the well with the highest IP in the Eagle Ford (EOG Burrow 5H) reported IP of 7,512 BOpd, 6,877 MCFpd, 1,378 BWpd (8,658 BPEpd) Completed with 15,763,048 lbs (7,881.5 tons) proppant over a lateral length of 5,340’ (12,019-17,359) Proppant has a specific gravity of 2.65, meaning that it is 2.65 times heavier than water. So proppant weighs 2.65 kilograms per liter. The amount of sand used in the frac is a cube of proppant that is about 13.9 meters (about 45.6 feet) on each side. If you ground up the Washington Monument, it would frac about 11.5 wells by weight.

Using the volume of 95,282.92 cubic feet of frac sand and the completed lateral length of 5,340’ the radius of the cylinder of sand is only 2.38’ and 2.42’ with the casing diameter included.

When you consider the volume of sand over the length of the borehole, it is not that much sand!
Unconventional Plays

- **Mariana**
- **Los Angeles Basin**

- **Bakken**
 - Williston Basin
 - Caledon Basin

- **Bakken***
 - Williston Basin
 - Mowry

- **Shale plays**
 - Current plays
 - Prospective plays

- **Stacked plays**
 - Shallowest/youngest
 - Intermediate depth/age
 - Deepest/oldest

- **Basins**
 - Mixed shale & chalk play
 - Mixed shale & limestone play
 - Mixed shale & tight dolostone-siltstone-sandstone

- **Map**
 - Western Gulf
 - Eagle Ford
 - Haynesville-Bossier
 - Appalachian Basin
 - Devonian (Ohio)
 - Utica
Generalized Mesozoic–Cenozoic stratigraphic section of the northern Gulf of Mexico coastal plain, showing reservoir rocks and potential hydrocarbon source-rock intervals.

Pot. = potential; Mid. = Middle; Pal. = Paleocene; Plei. = Pleistocene; Holo. = Holocene; Quat. = Quaternary; Tria. = Triassic; Up. = Upper; L. = Lower; Grp. = Group; Fm. = Formation; Ls. = Limestone; Ch. = Chalk.
Spatial distribution of Claiborne reservoirs less than 8000 ft (2438 m) depth to top and greater than 8000 ft (2438 m) depth to top. Claiborne Group outcrop from Schruben et al. (1994); Wilcox and Claiborne shelf margins from Galloway et al. (2000), Hackley (2010).
Hydrocarbon Shows in Austin Shale

Oil and Gas Shows
Conclusions

• We have always been concerned about the future
• We have always developed ideas and technologies to overcome
• Look outside the box and develop new ideas
• Look beyond the boundaries (or don’t let someone else set the boundaries)
• There are always more prospects to develop – keep an open mind
No prospect before its time........