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Abstract

Both the Woodford Shale (Oklahoma, U.S.A.) and the Barnett Shale (Texas, U.S.A.) are prolific unconventional resource shales. Both sit atop
unconformities on the surface of underlying carbonate rocks. There is variable topographic relief on the unconformity surfaces due to incised
valley and/or karst formation during periods of subaerial exposure resulting from lowered sea level. Anomalously high thicknesses of the shale
can form within these topographic depressions, giving rise to potential “sweet spots” as drilling targets. Additionally, these shales often exhibit
basal intervals of high gamma-ray log response, indicative of high organic matter (TOC). It is likely that the topographic relief that is formed
during subaerial exposure creates areas of restricted marine circulation during early rise in sea level, and subsequent, localized anoxic
depositional environments conducive to preservation of organic matter. It is possible that during the time after unconformity formation and
prior to marine encroachment into incised valleys, lacustrine environments may form, which would be sites for earliest accumulation of
organic-rich mud.
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Woodford Incised valley fills and karst fills = potential sweet spots (greater thickness/organic-rich)
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Woodford Shale Stratigraphy
(Upper Devonian - Lower Mississippian)
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Presenter’s notes:

Organic rich black shale
Thickness of the Woodford Shale ranges from 900 ft in the deep parts of the Anadarko Basin to 125 ft in the northern shelf

In southern Oklahoma >700 ft, <200 ft
Comer (2008) indicated that the thickness of the Woodford Shale is >500 ft in the Anadarko basin and <100 ft thick in the shelf areas and platforms



Woodford Incised Valleys
Valley fill is thin where underlying Hunton is thick and vice versa
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The TOCpd for the top 10 shale-gas resource systems. Jarvie, 2012
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These data show the average TOCpd (present day) values for each system with the range of values, standard deviation, and
number of samples. Given the high thermal maturity of these shales, these values are indicative of the nongenerative organic
carbon (NGOC) values. TOCpd = present-day total organic carbon; stdev = standard deviation; n = number of samples.

Organic Geochemistry




Gamma-ray log of well W-2 showing the second-order sequence
boundaries (SB) of the Woodford Shale and superimposed 3™
order parasequences.
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TOC from seismic inversion of Woodford
3D seismic volume

Total organic carbon (TOC) content maps for
the Woodford Shale’s parasequences sets in
the study area. Dashed lines outline areas
where this second-order sequence has more
than 200 feet in thickness and are associated
with pre-Woodford karsts or incised valleys
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Barnett Shale 3D horizon slices showing Karst surface and into the overlying Barnett
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Generalized sequence stratigraphic model for unconventional resource shales

Presenter’s notes: Generalized sequence stratigraphic model of unconventional resource shales. SB = Sequence Boundary; TSE = Transgressive Surface of
Erosion; TST = Transgressive Systems Tract; CS = Condensed Section; mfs = maximum flooding surface; HST = Highstand Systems Tract. Two
conceptual gamma ray logs are shown on the upper figure and on the lower left, to demonstrate the log responses of the different components. The lower
middle diagram is a relative sea level curve illustrating the positions or times within a sea level cycle when each component is formed. The lower right
diagram (after VanWagoner et al., 1990), shows 2" and 34 order cycles and a composite relative sea level curve of these two orders of cyclicity.
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Geologic time

Continued rising stage sea level (transgression)
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Generalized sequence stratigraphic model for unconventional resource shales

Presenter’s notes: Generalized sequence stratigraphic model of unconventional resource shale as shown in five time steps (Time 1 to Time 5). SB =
Sequence Boundary; FSST = Falling Stage Systems Tract; LST = Lowstand Systems Tract; TSE = Transgressive Surface of Erosion; TST = Transgressive
Systems Tract; CS = Condensed Section; mfs = maximum flooding surface; HST = Highstand Systems Tract. The time steps are described in the text. A
conceptual gamma ray log is shown on figure A both for stratigraphic sequences that formed landward of the minimum position of the shoreline (TST sits
directly on SB/TSE) and seaward of the minimum position of the shoreline (FSST/LST sits below the TST). Figure B is a relative sea level curve illustrating
the relative times within a sea level cycle when each component is formed. Figure C (after Van Wagoner et al., 1990) shows 2" and 3" order cycles and a
composite relative sea level curve by superimposition of these two orders of cyclicity.





