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Abstract

Traditionally, organic petrology (OP) method is defined as an optical-based, reflected white and fluorescent light, microscopic characterization-
classification-quantification, and measurement of % reflectance in oil (%Ro) and VIS of individual primary (kerogen) and secondary (e.g.,
bitumens, oils, solid hydrocarbons, pyrobitumens) organic matter, referred to as macerals. Combined, primary and secondary organic matter,
make up total weight percent of organic carbon in sedimentary rocks, including liquid-rich shale (LRS). Perfecting the sample preparation of
fine-grained rocks is not achieved in many labs, thus negatively impacting analytical data and interpretations. Ideally LRS samples for OP
maceral analyses should be whole rocks, very gently crushed and or sized such that random, parallel, and perpendicular to bedding, and or
microfractures are represented, and impregnated with new, very low viscosity, epoxy, under vacuum conditions. Use of solid, bored, acrylic
rods and epoxy are an ideal combination for superior preparation of LRS samples, thus ensuring integrity and retention of all microtextural
elements and organic (e.g., friable ‘solid bitumens’) and mineral (e.g., clays) matter that are otherwise prone to plucking during the grinding
and polishing process, resulting in poor quality data, poor interpretations.

Commonly, the assessment of microscopic organic matter is inadequate because of lack of versatility in classifications and under-recognition of
secondary organic matter in LRS. A new, maceral classification for primary and secondary dispersed organic matter in sedimentary rocks,
adopted by the International Committee for Coal and Organic Petrology (I.C.C.P) in 2013, will improve consistency in nomenclature between
commercial labs, if explicitly requested by clients. In order to adequately evaluate original kerogen type, organic facies, and paleodepositional
settings of LRS, based on data collected following the I.C.C.P. (2013 ) classification of dispersed organic matter (DOM), higher levels of
macerals classification identification (e.g., maceral type, maceral variety, maceral sub-variety (Table below) needs to be augmented with
inorganic microfossil components. Examples are provided from ahe WCSB.
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Secondary organic matter likely constitutes more of the TOC in LRS than has previously been recognized by OP; that is, there are higher
amounts of solid hydrocarbon and pyrobitumens derived from kerogen to bitumen to oil conversion and from oil to gas and oil to condensate
cracking. This has implications for assessing original petroleum potential of an LRS, and potential, for linking OM-related nano-porosity to
individual secondary maceral types using combined OP and FIBSEM types of analyses

Maceral Group | Maceral | Maceral type | Maceral Variety | Maceral Sub-variety

Tenui-Botryococcus; Large diameter/length
colonies, Usually >50 micron, cell walls are
Liptinite Alginite | Telalginite | Botryococcus highly thickened

Crassi-Botryococcus; Small diameter/length
colonies, Usually 5 - < 50 microns, cell walls
are thins
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1.0 Introduction to Organic Petrology Whatis It ?

‘Organic Petrology is a branch of the Earth
Science that studies fossil organic matter in
sedimentary sequences including coal and the
dispersed organic matter in rocks (DOM)’

‘Organic petrology is usually expressed by two
fundamental parameters: the nature and
proportions of the organic constituents, and by
the rank or maturity of these organic
components.

(Modified from Suarez-Ruiz et al., 2012)

Largely based on optical microscopic methods



1.0 INTRODUCTION TO ORGANIC PETROLOGY (OP)

Analysis of polished whole rock samples, using reflected white and

(1)

(i1

(iii)

SIEP

fluorescent light, optical microscopy. OP can address questions
such as:

What was the primary biological matter contributing to the
kerogen (e.g., algae, spores, woody matter, bacteria); organic
facies or paleodepositional setting, and control on original
kerogen type/petroleum potential?

What are the secondary products in the Organic Matter
asemblage (oils, bitumens , solid hydrocarbons, pyrobitumens)

What is the level of thermal maturity of the kerogen and
secondary products (e.g., solid bitumens, oil inclusions),
immature-, early oil-, light liquids-, condensate-, dry gas-
windows

Restricted October 2013
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1.0 SAMPLE PREPARATION & INSTRUMENTATION

Reflected light white and
Sample preparation for microscopy: fluorescent light microscopy:

January 2012
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1.0 OPTICAL MICROSCOPY: REFLECTED WHITE &
FLUORESCENT LIGHT




1.0 VITRINITE %RO: ZEISS ® AND FOSSIL SYSTEM ® EXPANDED CAPABILITIES FOR
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1.0 Organic Matter Classification using optical Microscopy

Maceral Group

Maceral examples

Vitrinite

telovitrinite

Sporinite

resinite
cutinite

Chlorophyllinite
Resinite

Alginites,
Dinoflagellates,
Acritarchs

fusinite
semi-fusinite

Precursor biological matter

cell walls of wood (and other
lignin etc.) Derivatives

terrestrial plant spores, pollen

higher and lower waxy plant
leaves, cuticles,

chlorophyll
plant resins

marine and freshwater algae,
benthic or planktonic

wood-derived charcoal; oxidized
organic matter floral faunal-
bacterial,



1.0 METHODOLOGY: JAND M VIS MICROFLUORESCENCE SPECTRA FOR
PRASINOPHYTE ALGINITE IN MUSKWA FM, ~>0.70 - < 0.80 V%RO EQUIV.
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VIS FLUORESCENCE OF TASMANITES SHOWING RED SHIFT WITH INCREASING
DEPTH V%RO FROM CRETACEOUS TO DEVONIAN , MATURATION SERIES AT B-45,
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1.0 VIS flourescence microspectrometry of petroleum
Inclusions and API gravity.
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1.0 METHODOLOGY: REFLECTED WHITE LIGHT MICROSCOPY OF
POLISHED WHOLE ROCK PARALLEL TO BEDDING VIEW, BIOGENIC
SILICA, ORGANIC FACIES D, UPPER DEVONIAN, MUSKWA, V%R 1.0

SIEP
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1.0 METHODOLOGY : CONFOCAL LASER SCANNING
FLUORESCENCE MICROSCOPY

Chlorophyll, lipids/diatom

bioljgical oils

SIEP
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1.0 METHODOLOGY: CONFOCAL LASER SCANNING FLUORESCENCE
MICROSCOPY, PROTEROZOIC BIOGENIC SILICA PROBABLY RADIOLARIA-
SILICOFLAGELLATE SKELETONS: INFRA-CAMBRIAN,~ 650 MA

Possible flagella
preserved

SEM images of Recent silicoflagellates
(From McCartney, 1993)

X ()

»Age range in literature : 'first appear in
Early Cretaceous'
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Outcrop cyanobacterial ‘'mat’' from desert in 4 corners area, SW USA-
related to oil seep at surface (Recent and ancient organic matter)

SIEP Restricted October 2013
Global Soutions ICE Team January 2012






2.0  TSOP and ICCP Classification of Dispersed Organic Matter
(macerals) in sedimentary rocks and isolated organic matter!

MACERAL MACERAL3 MACERAL | MACERAL3
GROUP GROUP
Vitrinite '(F:ellilniter : Zooclasts | Scolecodont
Virodetrinit (Type Il to 1 Graptolit
(Type Il [Collodetrinite kerogen) |[hilinozoa
kerogen) [Gelinite Foram lining
Corpogelinite Secondary | (Migra)bitumen
Liptinite [ Alginite Products -
Bituminite Oil
(Amorphinite)* Pyrobitumen
(Type I to I Liptodetrinite ———— ——
kerogen) SpO.I'iI.ﬁ‘[C 1000 o SR Organiems| Cpotential
Cutinite
Suberinite soo - P a0
Resinite = ] r———
Chlorophyllinite = w00 Sigas’sy
Inertinite | Fusinite = h
Semifusinite S “erene
(Type IV Funginite —oo | —
kerogen) | Secretinite a
Macrinite o |
Micrinite - c,';,;;g:;”g’::" Oxygen Index
Inertodetrinite

Presenter’s notes: Footnotes—1. Outcrop, core, side-wall core, well cuttings samples at moderate thermal maturity (within the oil window 0.5
to 1.3% Ro); 2. Sample processed with HCI and HF acids. 3. Using transmitted light and kerogen concentrates, it may not be possible to
subdivide the vitrinite group into macerals; therefore vitrinite must be used. This may also apply to macerals within the inertinite group. 4.
Bituminite is a defined ICCP maceral term, variety amorphinite is more commonly applied to this type of DOM and and can be further
expanded upon using the following recommendations: (i) fluorescing (fluoramorphinite) and non-fluorescing (hebamorphinite) amorphinite
(Sentfle et al., 1987) or (ii) Types A, B, C, D (Thompson and Dembicki, 1986). May 22/02



2.0 CLASSIFICATION EXPANSION OF ALGINITE MACERAL FOR
ORGANIC FACIES

Maceral
Group

Maceral

Maceral
type

Maceral Variety

Maceral Sub-variety

Liptinite

Alginite

Telalginite

Botryococcus

Tenui-Botryococcus; Large diameter/length colonies, Usually
>50 micron, cell walls are highly thickened

Crassi-Botryococcus; Small diameter/length colonies, Usually
5 - < 50 microns, cell walls are thins,

Tasmanites

Large diameter/length, usually > 75 microns, thick walled,
cyst - like

Small diameter/length thin usually 5 microns - < 50 microns

Leiosphaeridia

Large diameter/length, usually > 75 microns, thick walled,
cyst - like

Small diameter/length thin usually 5 microns - < 50 microns

Pila

Reinschia
Large diameter/length colonies, Usually >50 micron, cell

Gloeocapsa walls are highly thickened; forms stromatolites/ algal mats
Small diameter/length colonies, Usually 5 - < 50 microns, cell
walls are thins,

Pediastrum

Acritarchs Acanthomorphic-like

Veryachium -like

Michysridium - like

Dinoflagellates

theca ; non resting cells

chorate cysts Restricted October 2013 irg

Lamalginite [Filamentous




2.0 CLASSIFICATION EXPANSION OF MICROFOSSIL AND ZOOCLAST
‘MACERAL GROUP’ FOR ORGANIC FACIES INTERPRETATION

Maceral Group Maceral Maceral type
biogenic siliceous
Non-organic Microfossils microfossils radiolaria
Diatoms, silicoflagellates;
chrysophytes

tentaculites

Pyritized microfossils

algal filaments and cells

forams

wood

phosphatic microfossils

conodonts

pellets

bone

calcareous micro- and
nanoplankton fossils

Coccoliths, calcareous
nanoplankton,

microforams

cricoconarids

ooclasts

Graptolite

telagraptolite

collograptolite

Chitinozoa

Scolecodont




2.0 THE DISTRIBUTION OF ORGANIC MATTER TYPE, QUALITY, QUANTITY,
AND INORGANIC MICROFOSSILS (E.G., BIOGENIC SILICA) CAN VARY
SIGNIFICANTLY VERTICALLY AND LATERALLY IN LRS

UV excitation, polished whole rock,
perpendicular to bedding

— - Nrogn, P o -
e g e S 3 N g N ]
P e T gl L DR e TG T

Blue light excitation, polished whole
rock, perpendicular to bedding
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2.0 THE DISTRIBUTION OF ORGANIC MATTER TYPE, QUALITY, QUANTITY,
AND INORGANIC MICROFOSSILS CAN VARY SIGNIFICANTLY VERTICALLY

AND LATERALLY IN LRS
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3.0 WCSB ORGANIC FACIES MODELS: UPPER TRIASSIC, DOIG &
UPPER MONTNEY FMS; GROUNDBIRCH & SUNSET SHALE GAS

ASSETS, CANADA
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3.0 WCSB ORGANIC FACIES MODELS: UPPER TRIASSIC, DOIG & UPPER
MONTNEY FMS; GROUNDBIRCH GAS & SUNSET LRS ASSETS, CANADA
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3.0 WCSB ORGANIC FACIES MODELS: UPPER TRIASSIC DOIG PHOSPHATE
SUNSET LRS ASSETS, CANADA,; SIGNIFICANT CALCAREOUS NANNO-
PLANKTON, COCCOLITHS,

.-

L7 coccolith coccolith
& L

e
§

Blue light excitation, polished whole rock, oil immersion objectives

Clol0 |
z ..} SEM calcareous
4 nannoplankton
m @_ (from Lipps, 1997)
M
Global Soutions ICE Team D g L'J |

Presenter’s notes: What are calcareous nannoplankton? The calcareous nannoplankton are unicellular photosynthetic protists, members of the
group Haptophyta. They may take on many different shapes, but all have shells composed of tiny, calcium carbonate plates called “coccoliths.”
These tiny plankton are found mostly in tropical marine environments and are important primary producers. After the organisms die, their
coccoliths accumulate on the bottom of the ocean, forming calcareous oozes that can harden into chalks and other fine-grained limestones.
Fossils of calcareous nannoplankton have been found in limestones and chalks since the Jurassic.



3.0 WCSB ORGANIC FACIES MODELS : UPPER TRIASSIC DOIG AND
UPPER MONTNEY, SUNSET LRS ASSETS, CORE 180 M
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3.0 WCSB ORGANIC FACIES MODELS: UPPER DEVONIAN

DUVERNAY FORMATION SHALES

WEST
"DEEP BASIN' AREA PEMBINA MEADOWBROOK

‘ PEACE RIVER RAINBOW AMA LA CRETE 300m
‘ ARCH

| 7] Shallow-Marie Carboraies [s¥57] Evepore BasinFil [~ Basinal Snales and Cerbonates TTRTT] Resticted Temigenaus and Evapartic Sequences
Fig. 2. Composite schematic cross-section across the Alberta Basin illustrating the cyclicity of Devonian successions and the distribution of
major facies. The portion of the cross-section above the base of the Watt Mountain Formation is from central Alberta and corresponds to the geo-
graphic locations listed above the section. The lower portion of the cross-section, below the Watt Mountain Formation, is from northern Alberta and
corresponds to the geographic locations listed below the sections. The bituminous marker is part of the Upper Elk Point succession and the
Duvernay laminites are part of the Woodbend succession.
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FACIES KEY
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3.0 WCSB Organic Facies Model for Devonian shales, based
on macerals and siliceous microfossil assemblage
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3.0 WCSB ORGANIC FACIES: UPPER DEVONIAN DUVERNAY
FORMATION - LRS; VERTICAL VARIATION IN ORGANIC FACIES AT
RIMBEY LEDUC REEFS
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3.0 WCSB ORGANIC FACIES; DUVERNAY FORMATION REGIONAL
VARIATION IN ORGANIC FACIES
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3.0 ORGANIC FACIES IN MARINE PETROLEUM SOURCE ROCKS,
UPPER ORDOVICIAN, WILLISTON BASIN: SUBTIDAL LIME MUDSTONES,
VERY HIGH TOC’S, TYPE | AND Il KEROGEN
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3.0 Paleodepositional Model for G. prisca alginite in Upper
Ordovician lime mudstones, Type | and Il kerogen
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3.0 VERTICAL VARIATIONS IN INORGANIC MICROFOSSIL, BIOGENIC
SILICA, IN CAMBRIAN ALUM SHALE, SWEDEN, OVER 10°'S M

Estimated Volume % of biogenic mineral (out of 100 % Mineral
0 20 40 Matter) 60 80 100
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3.0 VERTICAL VARIATIONS IN HC POTENTIAL AND TYPE CONTROLLED BY
DOM CONTENT — ALGINITE TYPE, IN CAMBRIAN ALUM SHALE, SWEDEN,

OVER 1 O S M % nOI'.mal akinete cells
\ vegetative cells
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germinatio
Sporogenous y

~
D
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High amount filamentous alginite (blue-green “algae”/ cyanobacteria in
vegetative state with akinete cell-heterocysts ,~ tannins) with small
prasinophytes + amorphous organic matter



3.0 VERTICAL VARIATIONS IN HC POTENTIAL AND TYPE CONTROLLED BY
DOM CONTENT —ALGINITE TYPE, IN CAMBRIAN ALUM SHALE, SWEDEN,
OVER 10°'S M, CAMBRIAN ALUM SHALE SWEDEN
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Figure 9, Distribusion of normal paraffing in the products released and residues of artificially
nutured Afum Shale kerogen, as cowpared to other alginites.

From Baharti and Larter, 1995

Alum shale OF with filamentous alginite
(blue-green “algae’”/ cyanobacteria in
vegetative state with akinete cell-
heterocysts, ~ tannins), with small

prasinophytes + amorphous organic
matter
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ORGANIC FACIES IN DUVERNAY’ SCAN KAYBOB WELL, FOX CREEK
PLAY AREA
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E.G., VERTICAL CHANGES IN SILICEOUS AND CALCAREOUS
MICROFOSSILS - IN LRS USED IN PART TO DEFINE ORGANIC FACIES ,
PALEOZOIC.
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4.0 Stromatolite micro-textures, G. prisca alginite in Upper
Ordovician lime mudstones

(Stasiuk et al , 1993, Org. Geochem; 1999, Geoscience Canada)
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Vertical variations in organic microfacies & HC potential in Upper Ordovician, marine petroleum
source rocks, Williston basin, Saskachewan. Subtidal, lime mudstones with average to very high

TOC’s, Type | & Il kerogen, comprising microlaminated, disseminated coccoidal alginite w/ spiny
acritarchs, and layered coccoidal alginite,

(Stasiuk et al , 1993, Org. Geochem; 1999, Geoscience Canada)
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3.0 WCSB ORGANIC FACIES MODELS UPPER
TRIASSIC UPPER MONTNEY TO DOIG ORGANIC
FACIES : LRS - SHALE GAS ASSETS
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