Inorganic Geochemistry of the Trenton Limestone-Utica Shale Contact Based on XRF Data*

Steve R. Saboda¹ and Gary G. Lash²

Search and Discovery Article #51038 (2014)**

Posted October 27, 2014

*Adapted from oral presentation given at AAPG 43rd Eastern Section Meeting, London, Ontario, Canada, September 27-30, 2014

**AAPG©2014 Serial rights given by author. For all other rights contact author directly.

¹University at Buffalo, Buffalo, NY, USA (srsaboda@gmail.com)
²SUNY Fredonia, Fredonia, NY, USA

Abstract

The contact of the Upper Ordovician Utica Shale and underlying Trenton Limestone is normally recognized as a sharp increase in gamma ray (GR) response, apparently reflecting the increased abundance of organic matter from the carbonate to overlying shale. Though conventional wisdom holds that organic–rich black shales can be identified by characteristic GR log signature, this may not be the case for the Utica Shale. Chemostratigraphic analysis of the Utica Shale core 75-NY2 using handheld XRF technology in tandem with a suite TOC data indicates that the Trenton–Utica contact based on GR response actually falls within the Utica Shale. Gamma–ray response principally reflects the abundance of K, Th, and especially U. Indeed, it is enrichment of the latter above crustal levels in the presence of abundant organic matter and related bacterial sulfate reduction typical of those environments in which black shale accumulates. However, U values of the lower carbonaceous interval of the Utica Shale remain close to or even depleted relative to crustal values, essentially unchanged from those concentrations of the underlying Trenton Limestone. Of particular interest is the roughly 6m thick interval of calcareous dark black shale devoid of graptolites containing > 10% TOC at the bottom of the Utica Shale. The apparent dichotomy of elevated TOC and minimal U concentration is obvious from an artificial GR log generated from our chemostratigraphic data that displays a profile similar to GR signatures documented from Utica wells. These results suggest that the sharp increase in GR response normally recognized as the Trenton/Utica contact actually delimits the top of the organic–rich interval within the bottom of the Utica. The level at which the GR increases is observed to be the boundary of organic–rich shale and overlying organic-lean (TOC ~ 1%) grayish black shale. The contact of the organic–rich and organic–lean shale correlates with an increase of U somewhat in excess of crustal levels. Although authigenic U concentrations can be
diluted by increased clastic flux, measured abundances of detrital proxies, including Al, Si, Ti, and Zr, are inconsistent with such an explanation. The U–depleted nature of the most organic–rich deposits of the Utica Shale may reflect the impress of Middle Ordovician global anoxia and consequent of drawdown of the global aqueous U inventory.

Selected References

Inorganic geochemistry of the Trenton Limestone-Utica Shale contact based on XRF data

Steve Saboda, American Energy Utica, LLC
Gary G. Lash, SUNY Fredonia
Analyzing a Utica Shale Core by use of XRF (X-ray fluorescence) and SEM (scanning electron microscope) in order to:

1. Generate chemostratigraphy: Higher resolution than typical well logs
2. Assess trace element signatures to define hydrographic conditions of the ocean
3. Work aims to produce high resolution stratigraphy that could be useful for placement of lateral well-bores
4. Understanding the controlling mechanisms of the formation of organic rich-deposits

Focus is on lower most section defining the contact of the Utica Shale and Trenton Limestone

- High TOC
- Subdued GR (unusual)
- Why?
Analytical Approach

Handheld XRF (HHXRF) analyzer...

Thermo Scientific Niton XL3t 950 GOLDD+...
...hand (outcrop) samples, core, cuttings...

...very strong correlations ($r^2 > 0.90$) with laboratory ICP-MS (inductively coupled plasma mass spectrometry) data for most major, minor and trace elements from Mg to U (Smith and Malicse, 2010)...

...shale can be analyzed at cm scale resolution...
Mohawk Valley Area
Core 75-NY-2

after Cross, 2004
Mohawk Valley Stratigraphy

Utica Shale ("sooty" black)

- Lithology easily identified
- Sharp contact unmistakably recognized
• Up-section a few meters
• Sharp contact between “sooty” black shale and black (gray) shale
TRENTON LIMESTONE

UTICA SHALE

- black “sooty” interval
- gray interval

- TOC of lower most Utica is near 10%
- Sharp contact
- TOC of Gray interval ≈ 1-2%

(Data from University of Buffalo, Jones 2013; C. E. Mitchell)
TRENTON LIMESTONE

UTICA SHALE

gray interval

black “sooty” interval

- Spectral GR by XRF
- Unusual that GR is subdued although TOC is high
- Conventional wisdom: organic-rich shale can be identified by GR
- Reflecting increased abundance of TOC
- Not the case for the Utica Shale
- Chemostratigraphic analysis places contact within Utica Shale
Utica Shale

Trenton Limestone

gamma ray

eastern NY
22531; Chautauqua County, NY

Utica Shale

Trenton Limestone

gamma ray
• Spectral GR similar to GR logs throughout NYS
• To understand why GR is subdued; must understand how GR is derived
• GR relies on 3 radio active elements (U, K, Th)
- U profile indicates values close to or even depleted to crustal values ($U = 2.7$ ppm)
- Contact organic-rich & organic-lean correlates to an increase of:
 - Somewhat in excess
 - Values not as expected (both intervals)
- What controls U precipitation?
 - Rate of sedimentation
 - Authigenic carbonate
 - Redox conditions

TRENTON LIMESTONE

UTICA SHALE

gray interval

black “sooty” interval
Could low U concentrations reflect dilution by clastic detritus?

- High sedimentation rate?
- U fixation to organics and sediment
- Detrital elements Al, Si, Zr, Ti

TRENTON LIMESTONE

UTICA SHALE

black “sooty” interval

gray interval
Al – a proxy (refractory) for clay.
Zr – a proxy for grain size.
Si – a proxy for grain size (silt-size quartz) and biogenic quartz.
Could low U concentrations reflect dilution by clastic detritus?

...does not appear to be the case...

UTICA SHALE

TRENTON LIMESTONE

gray interval

black “sooty” interval
Authigenic CaCO3 precipitation inhibits U precipitation

Ca precipitates in limestone as calcium carbonate (CaCO3)

Elevated in Black “sooty interval”

Sharp contact at black grey interval

Ca is thought to be detrital not authigenic
What are the redox conditions of the sediment?

Organic Matter oxidation process:

1. Oxygen
2. Sulfate Reduction (H_2S)
3. Methanogenesis

Mo values, while not all that high, do exceed crustal values (3.7 ppm);

However, still lower than expected for highly reducing conditions

Both U and Mo should be more enriched
Pyrite (FeS$_2$)

Need Reducing condition (H_2S) & reactive Fe

Two forms of iron:
- detrital
- reactive
Fe/S of stoichiometric pyrite = 0.87 (Gautier, 1987)…

UTICA SHALE

TRENTON LIMESTONE

black “sooty” interval

gray interval
Overwhelming amount of Sulfur

Conditions must have been reducing

gray interval

black “sooty” interval

TRENTON LIMESTONE

UTICA SHALE

 ✓ Overwhelming amount of Sulfur

 ✓ Conditions must have been reducing

Depth

S %
• Pyrite framboids form at the chemocline (small amount of O₂ is necessary);
• Framboids that form in the water column can grow to ~5μm before the water cannot support their weight and they sink
 • Statistical analysis of the framboid diameters show that under these conditions mean diameter is ~5μm, with a narrow range
• Framboids and euhedral grains forming in anoxic (near the redox boundary) sediment are limited by availability of reactants and can grow to much larger and diverse sizes.
“sooty” black shale
dark gray shale
Remaining Questions

-the “sooty” black shale, the most organic-rich interval, is defined by sub-crustal values of U;

-pyrite morphologies, Mo enrichment, and Fe/S suggest that the “sooty” black shale accumulated under reducing to intermittently euxinic, Fe-limited conditions;

-explanation for the seemingly U-depleted nature of the most organic-rich deposits;

-Middle (Late) Ordovician (Caradocian) Oceanic Anoxic Event;
Questions

Gary G. Lash,
Dept. of Geosciences,
SUNY Fredonia,
Fredonia, NY, 14063

Steve Saboda,
Geologist,
American Energy Utica, LLC
steve.saboda@aep-lp.com