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Abstract

Scanning electron microscopy of Ar-ion milled samples shows that character and evolution of porosity is strongly affected by type, abundance
and distribution of organic matter (OM) within the Eagle Ford Formation, South Texas. Samples were collected, imaged and quantified to
provide insight into pore types and distributions across a range of thermal maturities. Low maturity samples contain pore networks dominated
by relatively large coccolith-hosted primary intergranular pores with a mean equivalent circular diameter of ~110 nm, ranging up to ~2 um.
Primary intragranular pores are observed within coccolith fragments, coccolith-bearing fecal pellets, foraminifers, phosphate clasts, and other
skeletal debris. OM-associated pores at low maturity are dominantly large pores at boundaries between organic matter and mineral surfaces
with a mean equivalent circular diameter of ~100 nm. Smaller pores within clay-associated OM are observed, with a mean equivalent circular
diameter of ~30 nm. In contrast, high-maturity samples show porosity dominated by secondary pores within OM. OM consisting of smaller
equant pores grading into larger pores with more complex and irregular shapes. Measured OM-hosted pores range in equivalent circular
diameter from ~4 nm to ~400 nm with a mean of ~22 nm within high maturity samples. Mineral-hosted pores are also present at higher
maturities, many associated with clay minerals or dolomite, but are much smaller, with a mean equivalent circular diameter of ~60 nm ranging
up to ~850 nm. In addition, fecal pellets and skeletal grains are observed to contain OM that pervasively fills intra-particle pore space, which
suggest that porosity is reduced through incursion of mobilized bitumen. Both detrital kerogen and diagenetic bitumen are present at both high
and low maturity, and cause porosity loss both through deformation of ductile kerogen with compaction, as well as incursion of primary pore
space with mobilized diagenetic bitumen. As thermal maturation increases, bitumen is mobilized filling intra-particle pore space, and
secondary pores develop within OM.
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Conclusions

Porosity in the Eagle Ford is controlled by
chemical and mechanical processes: compaction,
cementation, and pore generation during OM
maturation.

The detrital grain assemblage (texture and
composition) controls the diagenetic response.

Abundant detrital OM is subject to compaction.

Rigid bioclastic debris is more resistant to
compaction.

Secondary OM (bitumen) destroys porosity and is
prone to later secondary pore generation.
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