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Abstract 

 

The Mid-Continent Mississippian Limestone is an unconventional carbonate reservoir with a complex depositional and diagenetic history. Oil 

and gas have been produced from vertical wells for over 50 years, but recent horizontal activity in low-porosity, low-permeability zones makes 

it crucial to understand the petrophysical characteristics to target producing intervals. Sonic velocity, or acoustic response, in carbonate rocks 

has predictable trends based on porosity, pore architecture, and location within a sequence stratigraphic framework. Previous work has shown 

that quantification of primary reservoir pore types (macro- vs. micro-) may increase the predictability of reservoir permeability within a basin. 

Facies are characterized by a hierarchy of shoaling-upward packages defined by planar-bedded mudstone at the base, followed by bioturbated, 

very fine- to fine-grain sand size crinoid-brachiopod skeletal wackestones, and massively bedded, peloidal-skeletal wackestone to grainstones 

at the top. A sequence stratigraphic hierarchy of shoaling-upward cycles are observed in core and wireline logs at third-, fourth-, and fifth-order 

scale. Acoustic response (compressional and shear wave) for a sub-set of samples from the Mississippian Limestone varies from 6500 to 

5000m/sec (Vp) and 4500-2500m/sec (Vs). Overall trends of the data confirm observations from previous studies regarding the expected range 

of acoustic response for low-porosity, low-permeability carbonates. Porosity in the horizontal direction, in the current data set, ranges from 0.5-

7%, although locally, porosity values may be as high as 20%. Pore diameter ranges in size from the mesopore (4mm-62.5 μm) to nanopore 

(1μm-1nm) size, with the majority of the porosity in the micro- to nanopore scale. Pores viewed with SEM show that the largest pores are 

mostly oblong- to oval-shaped intercrystalline to vuggy mesopores, with a diameter of 100μm x 25μm, whereas the smallest are circular-

shaped, intercrystalline to vuggy nanopores, with diameters of 5-10μm and 50-100nm pore throats. Petrophysical analyses have been integrated 

into high-resolution sequence stratigraphic analyses of core and outcrops from Oklahoma, Missouri, and Arkansas. Sonic velocity, coupled 

with characterization of macro- to nanoscale pore architecture, wireline logs and high-resolution sequence stratigraphic analyses, shows 

promise of predicting both key reservoir facies and key producing intervals within an unconventional carbonate reservoir. 
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Integrated Reservoir Characterization 



Porosity and Permeability Relationships 

Total 
Porosity  

Acoustic 
Response 

Acoustic 
Response 

Pore  

Architecture 

Primary & 
Secondary 

Porosity  

Permeability 



Velocity – Porosity Relationship  

in Carbonates 

Modified from Eberli et al. 2003 
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Velocity Correlation to Pore Type 
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Velocity – Permeability Relationship 

Modified from Anselmetti and Eberli 1999 



Digital Image Analysis and    

Permeability Prediction 
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Mississippian Limestone Reservoir Data  
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Mudrock Pore Classification 

Modified from Loucks et al. 2012 
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Pore Architecture:  
Thin Section Photomicrographs 

 = 19.96% 

k = 1.49 mD 

100mm 



Pore Architecture:  
Thin-Section Photomicrographs 



Pore Architecture 
SEM Photomicrographs – Core #1 

Loucks et al., 2012 



Pore Architecture 
SEM Photomicrographs – Core #1 

Loucks et al., 2012 



Pore Architecture 
SEM Photomicrographs – Core #1 

Loucks et al., 2012 



Pore Architecture 
SEM Photomicrographs – Core #2 

Loucks et al., 2012 



Pore Size, Porosity, and Permeability 

Relationship 

-- Larger pores ≠ greater permeability 

 

-- Smaller pores can have greater 

connectivity  



Porosity and Permeability (1” Plugs) 
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Velocity – Porosity Relationship  

in Carbonates 

Modified from Eberli et al. 2003 
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Velocity – Porosity Relationship  

Classified by Primary Pore Type 

R² = 0,4029 
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Macropore vs. Nanopore  

Velocity – Porosity Relationship 
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Macropore Carbonates 
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Digital Image Analysis: Pore Size 

Pore Length/Width: 

• Most Pores are <200µm x 20µm 

• Class size: Mesopore to Nanopore 

• Most: Micro- to Nanopore 

 



Digital Image Analysis:  

Pore Shape and Pore-Size Distribution 

Macro- and Microporosity Contribution:  

10% Macroporosity  

90% Meso-, Micro- and Nanoporosity  

Eqn. from (Anselmetti et al. 1998) 
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Preliminary Conclusions  

• Pores in carbonate mudrocks are meso- to nanoscale 

size but primarily micro- to nanoscale size. 

• Sonic velocity response has a predictable relationship to 

porosity in carbonate mudrocks, with a relationship 

similar to what is observed in carbonates with 

predominantly macropore systems. 

• Current data indicates carbonate mudrock sonic velocity 

response is less than the velocity predicted by the time 

average equation. 

• Based on porosity prediction from DIA, permeability 

prediction is possible with multivariate statistics.  
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Continued Research 

• Additional sonic velocity response from core and 
outcrop samples. 

• Argon milling coupled with SEM and digital image 
analysis to characterize the pore architecture.  

• High resolution CT-scans to view the pore architecture 
in 3-D. 

• Correlate porosity, permeability and acoustic response 
to high-resolution sequence stratigraphic analysis of 
core and outcrops in Northern Oklahoma, Southern 
Kansas, Arkansas and Missouri. 

• Create a static 3-D model to test the predictability of 
petrophysical properties in carbonate mudrocks. 
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