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Abstract

This study addresses the field-scale architecture and static connectivity of fluvial sandstones of the lower Williams Fork Formation through
analysis and reservoir modeling of analogous outcrop data from Coal Canyon, Piceance Basin, Colorado. The Upper Cretaceous lower
Williams Fork Formation is a relatively low net-to-gross ratio (commonly <30%) succession of fluvial channel sandstones, crevasse splays,
flood-plain mudstones, and coals that were deposited by meandering river systems within a coastal-plain setting. The lower Williams Fork
outcrops serve as proximal reservoir analogs because the strata dip gently eastward into the Piceance Basin where they form natural gas
reservoirs.

Three-dimensional architectural-element models (3-D reservoir models) of the lower Williams Fork Formation that are constrained to outcrop-
derived data (e.g., sandstone body types, dimensions, stratigraphic position) from Coal Canyon show how static sandstone body connectivity is
sensitive to sandstone body width and varies with net-to-gross ratio and well spacing. With a low well density (e.g., 160-acre well spacing),
connectivity is low for net-to-gross ratios less than 20%; connectivity increases between net-to-gross ratios of 20 to 30%, and levels off above a
net-to-gross ratio of 30%. As well density increases, static connectivity increases more linearly with an increasing net-to-gross ratio. For a 20-
acre well spacing, static connectivity can range from approximately 35 to 75% and 45 to 80% for net-to-gross ratios of 10 and 15%,
respectively, depending on sandstone body width. Given the lower net-to-gross ratio and continuity of lower Williams Fork deposits, this
underscores the importance of representative sandstone body statistics (e.g., sandstone body type, dimensions) to aid in subsurface correlation
and mapping and to constrain reservoir models.
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Outline

 Research objectives

e Study area, setting, stratigraphy

* Fluvial sandstone-body types
 Outcrop-based dimensional data

e Controls on fluvial reservoir connectivity
* Final thoughts...

Reservoir Characterization
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Research Obijectives RCMD»

For the Cretaceous Willlams Fork Formation
and equivalent strata:

Evaluate the stratigraphic variability and reservoir-scale
architecture of fluvial sandstone bodies

Establish a database of fluvial sandstone-body dimensions
for reservoir modeling (mapping)

Evaluate relationships among sandstone-body parameters
and reservoir connectivity

Apply outcrop-based concepts and statistics for integrated
reservoir characterization
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Regional Stratigraphy
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Depositional Setting
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Stratigraphy and Fluvial Styles
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Teredolites Ichnofacies —

indicating marine influen

The Teredolites
Ichnofacies is
identified by the
presence of borings in
wood (e.g.,
Teredolites), especially
those produced by
marine bivalves such
as the modern ship

worm, Teredo.



Skolithos Ichnofacies —
indicating marine influence

Ophiomorpha Skolithos
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Sandstone-Poor
lower Williams Fork Formation
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Sandstone-Rich
lower to middle Williams Fork Formation
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Sandstone-Rich
middle and upper Williams Fork Formation
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Sandstone-Rich
middle and upper Williams Fork Formation
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Summary of
Fluvial Architectural Elements

A Crevasse-splay body

AI
A A AI
l ===

-=— 40 to 840 ft —=

B Single-Story channel body

A

A
EENSSSNNNY

- 44 tp 1700 ft ——

A

A

A \\&\\h\:ﬂ_j o o e

-—— 53 27 ft ———

D Amalgamated channel complex (middle and upper Williams Fork Formation)

amalgamated
channel
complexes

/‘ﬁi‘if == "'_.

-+——— Apparent width of hundreds to thousand of ft —_——

Pranter et al.
(2009);
Pranter and
Sommer (2011)



RC

Methodology: Outcrop Measurements

Fluvial Sandstone-Body Dimensions were Measured 3 Ways

1. Field Mapping (GPS & Measured Sections); Ground Pounding
2. Aerial LIDAR coupled with Aerial Orthophotographs (Petrel)

3. Calibrated Photo Panoramas of Cliff Faces
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Sandstone-Body Distribution
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2001 & 2002 Cole and Cumella (2005)



Ground-Based LiDAR - “pilot” study @RCMDp




Architectural-Element Heterogeneity ¢ RC

Modified from Ellison (2004) and Pranter et al. (2007)




Architectural-Element Heterogeneity @RC

Hanging out
on the Rocks!

Graduate studen
for scale




Architectural-Element Heterogeneity RCMD»
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2-D and 3-D Point-Bar Reservoir Models

South

Lithology Model 1:
Homogeneous point bar
deposit

Lithology Model 2:
Fluid baffles along lateral
accretion surfaces

Lithology Model 3:

Fluid baffles associated with
shale breaks on lateral
accretion surfaces

Grain-Size Model:
Based on measured section

data from outcrop
Lithology Grain Size

Sand
Modified from Ellison (2004) and Pranter et al. (2007) 10.5m Shale




Significance of Architectural-Element m

Heterogeneity

South

Lithology Model 1

Lithology Model 2

Lithology Model 3

Modified from Ellison (2004) and Pranter et al. (2007)




Significance of Architectural-Element

Heterogeneity
south porosity & perm modeled using same method

Lithology Model 1
BTT = 29 days; SE = 85.7%

Time From

’:. : Injector (days)

52

Lithology Model 2
BTT = 52 days; SE =83.2%

T - —

Lithology Model 3

BTT =22 days; SE = 59.7% Modified from Ellison (2004) and Pranter et al. (2007)




Aerial LIiDAR - Light Detection And Ranging
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Coal Canyon Study Areas




2006 & 2007

Sandstone-Body
Dimensions:

Thickness and
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“Slice” Geometries in Modern Point Bar Complex m
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Mapped Fluvial Deposits - GPS
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Mapped Fluvial Deposits - LIDAR
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Fluvial Sandstone-Body Dimensions by Type:
Coal, Main, and Plateau Creek Canyons
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Geologically Constrained
Architectural-Element Estimation

Manual Interpretation
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¢ fining upward GR_NRM log signature
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e sharp base
e thickness: 2’ - 30’

Crevasse Splay Criteria
e <96 APl GR_NRM cut-off
e coarsening upward GR_NRM log signature
e <0.05DPHI_NRM log signature
e thickness: ~1’ - 15’

Floodplain Criteria
* >96 APl GR_NRM cut-off

Coal Criteria
e <96 APlI GR_NRM cut-off
e >(0.25 DPHI_NRM log signature

2010 - 2013

RCMD»

Constrained Quantitative
Interpretation
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Reservoir Connectivity “RCMID»

Fluvial 3-D models to assess connectivity of
reservoir sandstone bodies
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Various modeling methods

are used - Sommer (2007); Hewlett (2010);

] Pranter and Sommer (2011);
SIS, Object-Based, MPS, merged Sloan (2012); Pranter et al. (2013)




Connectivity Results / Significance
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Impact of Crevasse Splays
Static Sandstone-Body Connectivity @
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Reservoir Modeling Approach

What are the preserved shapes and distributions of
the fluvial deposits that form the reservoirs?
Two Scenarios (out of many)

flood plain / flood plain

Donselaar and Overeem, 2008




Impact of Mudstone Plugs (abandonment Mzn
channel fill) on Well Performance g

Cumulative Gas Recovery @ 30 years
String of Beads & Mud plug, 10-acre spacing

P50 — MP (average production)

. P50 — Strings of Beads (average production)

s
4 1l 11

Cumulative Gas, MSCF

Cumulative gas recovery after 30 years comparing the string-of-beads

MPS model with the mudstone-plug MPS model for 64 wells at 10-ac

(4-hectare, 330-ft) spacing. Shows the variation in recovery. The Production Cumulative Probability
string-of-beads MPS model shows the highest recovery over 30 years. String of Beads & Mud Plug, 10-acre spacing

Impact of /_,

mudstone plugs
(18% reduction)

Dynamic Connectivity

Cumulative Probability

Cumulative production probability comparing the string-of-beads
MPS model to the mudstone-plug MPS models at 10-ac (4-hectare,
330-ft) spacing. A difference of 18% production between the two
models occurs at 0.50 probability. The 18% difference in production
is related to the presence of mudstone plugs.

Cumulative Gas, MSCF




Deep, deep thoughts... RCMP
well, perhaps just common sense...

« Evaluation of reservoir heterogeneity, connectivity, and
performance relies on sound geological characterization at
different scales...

Reservoir connectivity is directly related to the stratigraphy,
sedimentology, and other geological characteristics...it is a 3-D
Issue and is actually a dynamic issue...

Static connectivity analysis based on 3-D reservoir models
provides, at best, a qualitative assessment of reservoir
connectivity...highly constrained 3-D static reservoir models and
dynamic simulation are essential...

There are many questions regarding the characteristics of fluvial
deposits and reservoirs, and importantly, how to properly
address the various scales of heterogeneity that exist...




Thank youl!




