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Abstract

Organic-rich shale and mudstone have long been recognized as primary sources of oil and natural gas. At elevated thermal maturities, they
may contain large volumes of natural gas. Organic content is the major factor controlling gas generation and storage capacity of shales.
Organic content is, in turn, controlled by organic productivity, organic matter preservation and sedimentation rate. A high-resolution
geochemical dataset has been developed on continuous core from Horn River shale to investigate composition variation and effect of sea
level fluctuation on productivity, redox condition and sedimentation rate.

Our research on the Middle and Upper Devonian Horn River shale (Horn River Basin, British Columbia), comprises the Muskwa, Otter Park,
and Evie formations and underlying Lower Keg River formation. We report here on a large suite of samples, taken at dense sample spacing
from a long Horn River core. Samples were analyzed by ICP and ICP-MS for major, minor and trace elements and Leco and Rock-Eval
analysis for organic carbon.

According to stacking pattern of mudstone lithofacies, a second order scale sequence stratigraphic framework has been established. The
Lower Keg River member is interpreted as an early transgressive system tract, then the Evie member forms a transgressive-highstand system
tract and the overlying Otter Park through Muskwa sequence forms a transgressive system.

TOC content is highest in the Evie and Muskwa Formations, averaging 3.5 to 4.0%, and 2.5% in the Otter Park. It seems that TOC is richest
in the late stage transgressive system tract and early stage of highstand system tract, in contrary, lowest in late stage of high system tract and
early stage of transgressive system tract. This pattern correlates to some extent with the strongest enrichment in the redox sensitive elements
Mo, U and V, suggesting that redox conditions were related to organic carbon deposition. However, to some extent, TOC variation is
reversely with redox sensitive element concentration, demonstrating that other factors like productivity and dilution may play a more
important role in organic matter enrichment. Statistical analysis of the inorganic geochemical data shows no correlation between SiO, and
other elements associated with feldspars and clays. SiO, is strongly and inversely related to carbonate content. We interpret the SiO, data as a


mailto:td2@ualberta.ca�

biogenic silica signal. Major elements indicate a trend of increasing biogenic silica and decreasing carbonates upward, while the clay-rich
Otter Park formation may represent a shorter-term sea level low stand.
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How to do sequence stratigraphy in shales ?
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Sea level cycles may be expressed in well
logs, geochemical data and mineralogy:.



SEM image examples from Horn River shale




How does sea level fluctuation control organic
matter deposition?
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Organic matter concentration

Sea level change will exert an effect on
productivity, preservation and dilution
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Geological setting
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Paleogeography

Western Canadian Sedimentary Basin
Middle Devonian Paleogeography
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Factor analysis-Maxhamish well

Factorl 36.9% Factor2 17.7% Factor3 10.4% Factor4 8.5% Factor5 3.8% Factor6 2.9% Factor7 1.9%

Stotal 0.611 TOC 0.526 V 0.926 Sio2 0.827 MgO 0.935 TI -0.879 P205 0.885
Al203 0.927 U 0.681 Mo 0.599 Ba 0.556 MnO 0.96
Fe203 0.597 Y 0.949 Zn 0.936 Ctotal -0.774
Na20 0.727 Gd 0.756 Ag 0.593 |InorganicC -0.764
K20 0.921 Th 0.782 Ni 0.649 CaO -0.737
TiO2 0.928 Dy 0.769 Cd 0.945 LOI -0.783
Cr203 0.722 Ho 0.839 Sh 0.88 Sr -0.59
Sc 0.869 Er 0.825 Se 0.709
Co 0.92 Tm 0.823
Cs 0.933 Yb 0.769
Ga 0.921 Lu 0.807
Hf 0.907
E: 8322 Factorl: associated with siliciclastic minerals:
Ta 0.799 clay+feldspar
Th 0.936 ] ]
Zr 0.905 Factor2: TOC is moderately correlative to U
La 0.807
Ce 0029 Factor3: redox-sensitive elements
Pr 0.863
oo Factor4: associated with carbonates, quartz is strongly
Eu 0619 positively correlated with this factor and decoupled
g; ggii from siliciclastic minerals. Both Si and Ba are positive
B 0792 with this factor

Factor7: Phosphorus behaves independently

30 60
Kilometers




Factor analysis-Imperial Komie well

Factorl 53.20% Factor2 10.10% Factor3 9.30% Factor4 4.10% Factorb 3% Factor6 2.20% Factor7 1.80%
Ctotal -0.827 | SiO2 0.615 V -0.878 MgO -0.912 Stotal -0.918 Au -0.972 P205 0.811
CaOo -0.698 | U 0.914 Zn -0.98 MnO -0.898
LOI -0.723 Mo 0.901 Cd -0.986
Al203 0.956 Ni 0.751 Sb -0.874
Fe203 0.556 As 0.722 Ag -0.835
Na20 0.726 Hg 0.629
K20 0.946
TiO2 0.976

Cr203 0.813

sc 0.968 Factorl: associated with siliciclastic minerals: clay+feldspar,
Ba 0.8

Co 0915 Carbonates has a opposing trend with clastic minerals.
Cs 0.938

ﬁ? 822}1 Factor2: redox-sensitive elements, Si behaviors differently
Nb 0.938 from clastic input

EE 82;‘3 Factor7: Phosphorus behaves independently

Ta 0.883

Th 0.982
W 0.735
Zr 0.954

Y 0.719

30 60
Kilometers




Basin restriction proxy - Mo/TOC
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Highstand system tract
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Maxhamish well
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Major elements
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Zr vs SIO2 binary plots
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Mineralogy -Maxhamish well
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Sea level change interpretation
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Paleoredox proxy
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Detrital flux
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Discussion
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Conclusion

® Horn River shale was deposited in a restricted basin;

® Basin restriction proxy Mo/TOC can be a good
expression of 2nd order and 3rd cycles of sea level,

® Probably mineralogy, especially clay content versus
guartz concentration can be used to indicate sea level
fluctuation;

® Factors controlling organic matter deposition,
preservation and dilution are generally controlled by
sea level variation.

e Muskwa and Evie formation assigned to transgressive
and highstand system tract, having relatively high TOC
and high brittle minerals (quartz and carbonate), which
Is favorable for shale gas production.
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