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Abstract

This presentation explores the many categories of seismic attributes created in the last 20 years and their general use in an
interpretation workflow. Unsupervised Neural Analysis of seismic attributes has been shown to be effective in understanding
variations in unconventional resource geological deposition, finding “sweet spots” and understanding complex structural and
fracture trends. Neurons find natural clusters in the data and classify into Self-Organized Maps. A neural map is a 2D
representation of the result of classifying and associating the data, which may be in “n” dimensions, such as many attributes in
a 3D volume. A series of case histories, both unconventional and conventional in nature are shown in which neural mapping
have helped find production, understand reservoir properties, fracture trends and even pressure zones in data.
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What is a Seismic Attribute?

A measurable property of seismic data, such as amplitude, dip. frequency, phase
and polarity. Attributes can be measured at one instant in time or over a time
window, and may be measured on a single trace, or on a set of traces oron a
surface interpreted from seismic data.

Schlumberger Oilfield Dictionary

Seismic attributes reveal features, relationships, and patterns in the seismic data
that otherwise might not be noticed.

Chopra and Marfurt, 2007



Objectives for using Seismic Attributes

* To take advantage of the seismic attribute analysis
and today’s visualization technology, to mine
pertinent geologic information from a huge amount
of seismic data

 The ultimate goal s to enable the
geoscientist to produce a more accurate
interpretation and reduce exploration and
development risk.




First Attributes Applied for Interpretation

Complex Trace Attributes
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Development of Seismic Attributes

» Since the Taner et al. (1979) paper, there
have been hundreds of different types of
seismic attributes developed.

* There have been so many seismic attributes
developed that there is no standard
methodology to categorize them.



Most Common Seismic Attributes for Interpretation

Instantaneous attributes
(trace envelope, instantaneous phase, instantaneous frequency)

Amplitude defining attributes
(Average Energy., Sweetness, RMS)

Coherency/Similarity
AVO Attributes
Inversion

Spectral Decomposition

Curvature



Instantaneous Attributes

Reflection Strength (trace envelope, mstantaneous

amplitude)

Lithological contrasts
Bedding continuity
Bed spacing

Gross porosity

DHIs

Instantaneous Phase

Bedding continuity

Visualization of unconformities and faults

Instantaneous Frequency

Bed thickness
Lithological contrasts

Fhuid content (frequency attenuation) —
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Amplitude Accentuating Attributes

These attributes help define how the amplitude stands out
against surrounding reflectors and background events.

*DHI characteristics
Stratigraphic
variations
RMS ity
Relative Acoustic Impedance :{?t".::)s;o variations
Lathotogy varmations

Average Energy
Sweetness (frequency weighted envelope)
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Coherency /Similarity
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. Instantaneous Dip o

Coherency, similarity, continuity, semblance and
covariance are similar and relate to a measure of
similarity between a number of adjacent seismic traces
(multi-trace analysis). They convert data into a volume
of discontinuity that reveals faults, fractures, and
stratigraphic variations.




AVO Attributes

AVO attribute volumes are computed from prestack data (gathers) . They include
combinations of near, mid, and far offset or angle stacks and depending on
approximations of the Knott-Zoeppritz equations, various AVO components. Most of
the AVO attributes are derived from intercept and gradient values or equivalents.

They are employed to interpret
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Seismic Inversion

» Inversion transforms seismic reflection data into rock and fluid properties.

» The objective of seismic inversion is to convert reflectivity data (interface properties) to layer
properties.

» To determine elastic parameters, the reflectivity from AVO effects must be inverted.

» The most basic inversion calculates acoustic impedance (density X velocity) of layers from
which predictions about lithology and porosity can be made.

» The more advanced inversion methods attempt to discriminate specifically between lithology,
porosity, and fluid effects.

Recursive Trace Integration

Colored Inversion
Sparse Spike

Model-Based Inversion
Prestack Inversion (AVO Inversion)

Elastic Impedance

Extended Elastic Impedance

Simultaneous Inversion
Stochastic Inversion

Geostatistical

Bayesian




Spectral Decomposition

Use of small or short windows for transforming and displaying frequency spectra
(Sheriff, 2005 Encyclopedic Dictionary of Applied Geophysics). In other words, the
conversion of seismic data into discrete frequencies or frequency bands.

. yer thickness determinations
= Stratigraphic variations
= DHI characteristics (e.g. shadow zones)

Discrete Fourier Transform
Fast Fourier Transform
Short Time Fourier Transform
Maximum Entropy Method
Continuous Wavelet Transform
Gabor
Gabor-Morley
Gaussian

Spice

Continuous Wavelet Packet-Like Transform
Wigner-Ville Distribution

Smoothed Wigner-Ville Distribution
Matching Pursuit

Exponential Pursuit




Curvature

Curvature is a measure of bends and breaks of seismic reflectors.
Another way to describe curvature for any point on a seismic
reflecting interface is the rate of change of direction of a curve.
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What if you could............
Reduce interpretation cycle by advanced
reconnaissance of your data?
Reduce risk in drilling marginal /dry holes?
Understand reservoir characteristics better?
Employ an analysis to help sort through the mountains

of attributes generated from your data?



The main task for geologists and geophysicists is to identify and ascribe the
geologic meaning to observable patterns in their seismic data.

The isolation of such patterns and the use as possible identifiers of
subsurface characteristics constitutes attribute analysis and can significantly
Impact reducing risk in hydrocarbon prospecting.

Self-Organizing Maps (SOM) is a powerful cluster analysis and pattern
recognition approach that helps interpreters identify patterns in their
data that can relate to geological characteristics such as lithology,
porosity, fluid content, facies, depositional environment, etc.




Cluster Analysis
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How many clusters do you expect?
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Search for Outliers
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Not your “Daddy’s” Neural Analysis

« Unsupervised neural analysis has been around
for some time — but the technology has
drastically changed because of increased
computer power and the invention/creation of
hundreds of new attributes from advanced
processing of seismic data.

» This is NOT “black box”, but employs advanced
understanding of various attributes and their
contribution to finding solutions to specific
problems in the seismic world. It can be “GIGO”
if not used carefully.



Neuron and Self-Organizing Map (SOM)

* A neuron is a point that identifies a natural cluster of attributes

* Clusters and data, identified by neurons, have geologic
significance

A SOM is a collection of neurons which _classify data
samples into categories based on their properties

- Properties may be of a geological or geophysical nature.

A neural map is a 2D representation of the result of classifying
and associating the data, which may be in ‘n’ dimensions, such
as many attributes in a 3D volume

Neural networks address the Big Data problem

Semblance

e
Neurons classifying data in 3 dimensions Amplitude Spec. Decomp. Curvature Dip Azimuth Sweetness L




Why Self Organizing Maps Now?

Computer power — parallel processing

Visualization technigues — 2D color maps, neuron isolation

Understanding of necessary input parameters — amount of
neurons, which attributes, epochs, etc.

Analysis at every sample

Understanding of probability factors




File  Tutorial Settings Help

Random Seismic SOM Design

Choose Seismic Survey
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Case Histories



Unconventional Resource Plays

The essential elements of unconventional resource plays
encompass the following categories:

Reservoir Geology: thickness, lateral extent, stratigraphy,
mineralogy, porosity, permeability

Geochemistry: TOC, maturity (Ro-heat), kerogen % (richness)

Geomechanics: acoustic impedance inversion, Young’s modulus,
Poisson’s ratio (Vp/Vs), pressures

Faults, Fractures, and Stress Regimes: coherency (similarity),
curvature, fault volumes, velocity anisotropy (azimuthal
distribution), stress maps




SOM Detalls for Eagle Ford

Attributes from Client:

Brittleness Coefficient
Final Density
LambdaRho

MuRho

P_Impedance
S_Impedance
Poisson’s Ratio
Poisson’s Brittleness
Young’s Brittleness

Curvature in Dip Direction
Envelope Slope

MuRho

PSTM (Amplitude volume)
S_Impedance

Trace Envelope

Youngs_ Brittleness
Attenuation

Bandwidth

Instantaneous Q

Run with 12 x 6 topology
80 Epochs
Time: 1.2 — 1.6 seconds




Eagle Ford Results — Sweet Spot

Well with few shows,
mechanical
problems — no production

Well with good shows, mechanical
problems — minimal production




Arbitrary Line through well |
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Fracture systems

& |
Selected Attributes

Curvature: in Dip Direction_TriCon
Curvature: in Strike Direction_TriCon
Curvature: Maximum_TriCon
Curvature: Minimum_TriCon
Curvature: Most Negative_TriCon
Curvature: Most Positive_TriCon

Dip Of Maximum Similarity_TriCon
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SOM Details for Buda

Average Energy

Dip Variance

Final Density

PSTM (Amplitude volume)
Poissons_ Brittleness
Relative Acoustic Impedance
S_Impedance

Sweetness

Instantaneous Frequency
Envelope

Run with 8 x 8 topology
80 Epochs
Time: 1.2 — 1.6 seconds




Buda Objectives

Did not penetrate Buda

Well with excellent shows, lost
circulation, had to set liner, finally
completed partial section flowing
naturally at 300 BOPD, after 6 months
is still producing 125 BOPD naturally




Conventional Type 2 AVO Yegua — thin pay

Seismic Attributes Employed for SOM Analysis

Far — Near
Near = 0°-15°

(Far — Near) Far Far = 31°-45
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Inline through well — amplitude data
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Conventional PSTM Amplitude Map
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SOM Classification — Base of Yegua Pay

slight horizon
change NW of
fault

w

J Drainage area now about 400 acres
which supports engineering/pressure data




SOM Classification Inline |
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rossline:

Inline
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Volume rendering visualization of specific neurons
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Oftshore Gulf of Mexico — Class 3 AVO

Three Sets of Seismic
Attributes for SOM Analysis

Attributes for Attenuation Attributes for Flat Spots Ten Attributes-HCI

1) Final Raw Migration 1) Final Raw Migration 1) Final Raw Migration

2) Instantaneous Q 2) Instantaneous Frequency  2) Instantaneous Frequency
3) Envelope 3) Instantaneous Phase 3) Attenuation

4) Attenuation 4) Normalized Amplitude 4) Average Energy

5) Sweetness 5) Phase Breaks 5) Dominant Frequency

6) Env. Time Derivative

7) Rel. Acoustic Impedance
8) SD Env. Sub-band 33.5 Hz
9) Envelope

10) Sweetness



3900’ Reservoir

e Upthrown Fault Closure
» Approximately 100’ Reservoir Sand

* Two Producing Wells
« #A-1 (gas on oil)
o #A-2 (01l)



Amplitude Map at Top of Reservoir
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SOM — Ten Attributes with Pro“;)ability Volume
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Attenuation Attributes — Classification Display
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SOM analysis for Non-Hydrocarbon Problems

Client had to stop drilling when they
encountered unusually high pressures which
had not been predicted

Conventional seismic analysis could not
“see” pressure 1n section

Series of 5 analyses shows solution in the
use of the 2D color bar to isolate specific
neurons.



Final Pore Pressure Profile
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Depositional Environment — Slope Fan

Slope Fan
(SF)
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Very often, as on this seismic line, from the offshore Cameroon, the identification of the slope
Jans is mainly based on undulated or hummocky configuration of the seismic reflectors (“gull
wings” of P. Vail), which is induced by the overbank deposits dipping in opposite directions.

Cramez/Universidade Fernando Pessoa



Seismic Attribute Set #2

Dip Azimuth

Similarity Variance

Smoothed Similarity

Relative Acoustic
Impedance

Imaginary Part

Envelope Slope



Classification Volume with #2 SOM
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Summary and Conclusions

» Unsupervised neural network analysis (SOM) employing
specific sets of attributes can be used to reduce risk and
identify solutions to problems within the seismic data.

» The more information used (wells, production, etc.) the better
the solution can be tuned with targeted attribute selections.

* Neural analysis can be done on 2D data or 3D data

* It is important to understand the functionality of the
attributes one chooses for the neural analysis in order
to understand the results




