Spectral Recomposition in Stratigraphic Interpretation*

Yihua Cai¹, Sergey Fomel², and Hongliu Zeng²

Search and Discovery Article #41376 (2014)**
Posted June 30, 2014

Abstract

Spectral recomposition splits the seismic spectrum into Ricker components. It provides a tool for imaging and mapping temporal bed thicknesses and geologic discontinuities. We propose separable nonlinear least-squares estimation in spectral recomposition. Employing the Gauss-Newton method, separable nonlinear least-squares approach estimates fundamental signal parameters: peak frequencies and amplitudes.

References Cited

Chakraborty, A., and D. Akaya, 1995, Frequency-time decomposition of seismic data using wavelet-based methods: Geophysics, v. 60/6, p. 1906-1916.

Chen, G., G. Matteucci, B. Fahmy, and C. Finn, 2008, Spectral-decomposition response to reservoir fluids from a deepwater West Africa reservoir: Geophysics, v. 73/6, p. C23-C30.

Chopra, S., and K.J. Marfurt, 2007, Volumetric curvature attributes adding value to 3D seismic data interpretation: The Leading Edge, v. 26, p. 856-867.

^{*}Adapted from oral presentation given at Geoscience Technology Workshop, Deepwater Reservoirs, Houston, Texas, January 28-29, 2014

^{**}AAPG©2014 Serial rights given by author. For all other rights contact author directly

¹Shell, Houston, TX (yihua.cai@shell.com)

²University of Texas at Austin, Austin, TX

Spectral Recomposition in Stratigraphic Interpretation

Yihua Cai*, Sergey Fomel, and Hongliu Zeng

University of Texas at Austin

* Currently with Shell

Outline

Motivation and Background	
	Spectral Analysis
	Spectral Recomposition
Theory and Numerical Method	
	Theory
	Numerical Method – Separable Nonlinear Least Squares Estimation
	Synthetic and Real Data Examples
Application of Spectral Recomposition	
	Seismic Data Display
	Stratal Slice Imaging and RGB Color Blending Plot
	Time-frequency Analysis Estimation
Summary	

Spectral Analysis

Spectral Recomposition

- 1. Manually select component frequencies;
- 2. Compute spectrum of each component;
- 3. Scale amplitude spectrum of each component;
- 4. Sum components up.

Theory

Model:

$$d(f) \approx \sum_{i=1}^{n} a_i \Psi_i(m_i, f)$$

d(f) is the spectrum of seismic data;

 a_i and

 m_i are the amplitude and peak frequency of the i-th Ricker component.

Ricker spectrum:

$$R(f) = a\Psi(m, f) = a\frac{f^2}{m^2}\exp(-\frac{f^2}{m^2})$$

To estimate a seismic spectrum, we need:

$$\mathbf{a} = \{a_1, a_2, \dots, a_n\}$$
 and $\mathbf{m} = \{m_1, m_2, \dots, m_n\}$

Each component has its own amplitude and peak frequency terms.

Numerical Method – Separable Nonlinear Least Squares

Let
$$r_j(\mathbf{a}, \mathbf{m}) = d(f_j) - \sum_{i=1}^n a_i(\mathbf{m}) \Psi_i(m_i, f_j)$$

Optimal least-squares estimation requires:

$$\min_{\mathbf{a},\mathbf{m}} \left\| \mathbf{r}(\mathbf{a},\mathbf{m}) \right\|_2^2$$

Linear and nonlinear parts are solved *separately* by least squares method.

(Scolnik, 1972)

The variable projection algorithm has been used. Assuming **m**, we have:

$$\mathbf{a} = \Psi(\mathbf{m})^{\dagger} \mathbf{d}$$

where

 $\Psi(\mathbf{m})$ is the matrix composed of

$$\Psi_i(m_i, f_j)$$

(Golub & Pereyra, 1973)

Having a solved, we then need to solve

$$\min_{\mathbf{m}} \left\| (\mathbf{I} - \Psi(\mathbf{m}) \Psi(\mathbf{m})^{\dagger}) \mathbf{d} \right\|_{2}^{2}$$

Gauss-Newton method has been used, hence

$$\begin{aligned} d(f_j) &\approx \sum_i r_j(m_i, f_j) + \sum_i \frac{\partial r_j}{\partial m_i} \Delta m_i \\ &\approx \sum_i a_i \Psi(m_i, f_j) + \sum_i [a_i' \Psi(m_i, f_j) + a_i \Psi'(m_i, f_j)] \Delta m_i \end{aligned}$$

Spectral Recomposition – Synthetic Data

Spectral Recomposition — Real Data Example

Spectral Recomposition — Data Fitting Example

Frequency Band Picking

Application of Spectral Recomposition Using SNLS

- Seismic image display
- Stratal slice imaging and RGB color blending
- Time-frequency analysis simulation

Component Peak Frequency 30 Hz

Component Peak Frequency 17 Hz

Component Peak Frequency 21 Hz

RGB Color Blending Plot

RGB color model: an additive color model in which red, green, and blue are added together to produce a broad array of colors.

- Using color blending plot, we can visualize subtle geologic features
- Various color blending plots based on various types of seismic attributes

Stratal Slice

RGB Color Blending Plot with Significant Components

Frequency (Hz) 20 40 60 80 Seismic Trace 0 0-7-2 Time (s) 3 9--100

-50

Amplitude

0

50

Time—Frequency Analysis

Summary

Spectral recompostion as a new approach of spectral analysis	
	extracts significant component frequencies and their amplitudes
	reconstructs seismic spectrum accurately and efficiently
	improves seismic display, color blending plot and t-f analysis
	can be used in inversion, reservoir characterization, etc.
SNLS in spectral recomposition	
	converges to local minimum quickly
	allows interpreter to choose number of components in estimation

Golub, G.H., and V. Pereyra, 1973, The differentiation of pseudoinverses and nonlinear least squares problems whose variables separate: SIAM Journal on Numerical Analysis, v. 10, p. 413-432.

Partyka, G., J. Gridley, and J. Lopez, 1999, Interpretational applications of spectral decomposition in reservoir characterization: The Leading Edge, v. 18/3, p. 353-360.

Scolnik, H.D., 1972, On the solution of non-linear least squares problems: IFIP Congress, IFIP Congress, p. 1258-1265.

Tomasso, M., R. Bouroullec, and D.R. Pyles, 2010, The use of spectral recomposition in tailored forward seismic modeling of outcrop analogs: AAPG Bulletin, v. 94/4, p. 457-474.

Zeng, H., and T.F. Hentz, 2004, High-frequency sequence stratigraphy from seismic sedimentology: Applied to Miocene, Vermilion Block 50, Tiger Shoal area, offshore Louisiana: AAPG Bulletin, v. 88/2, p. 153-174.