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Abstract 

 

The Mississippian is an important oil and gas system in north-central Oklahoma and south-central Kansas. Meramecian and Osagean 

reservoirs, sub-cropping beneath the Pennsylvanian-Mississippian un-conformity, have been developed by vertical wells since the 1940s and by 

surging horizontal well activity since 2008. Chesapeake Energy was among the first operators in the “Mississippi Lime” play and initiated the 

first horizontal well development program in the play with the Howell 1-33H in Woods County, Oklahoma. Since then, there have been more 

than 1,000 horizontal wells drilled in the Mississippian across Oklahoma and Kansas. 

 

This paper focuses on the construction and uses of three-dimension reservoir models in development of the Mississippian in northwestern 

Oklahoma. An interdisciplinary combination of cores, well logs, and seismic data are used to build a model of lithofacies, effective porosity, 

and fluid saturations. These full-field models are used to plan horizontal well trajectories and well spacing decisions for optimal development 

of the Mississippian reservoirs. 
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development in Osage 
and Meramec 
reservoirs in strat trap 
beneath Pre-Cherokee 
unconformity 
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MISS LIME CHALLENGES 

• Heterogeneous reservoir with changing lithofacies, structure, porosity, 
saturations 

• Horizontal well targeting (minimal GR character) 

• Field development concerns - how many wells 
per section? 
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Form ati on tops, stratigraphic 
framework, core lithofacies, 
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Tripolitic chert in core (left ) 
and thin secti on 

Extensive body of knowledge comes together for a comprehensive solution to 
aid in well planning and field development 
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MODEL GEOMETRY 

• Structural elements: Seismic depth maps • Layering accurately represents Meramec subcrop 
(Miss. & Woodford) at Miss. unconformity surface (0-80 layers) 

• Well formation tops (1208 wells) • Osage layering is proportional (60 layers) 
• Two-zone model: Meramec and Osage (color is height above base of zone) 

I Grid cell dimensions: 330' x 330' x 5 ' 

Meramec and Osage reservoirs modeled separately to preserve 
differences in mineralogy, porosity, etc. 
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SUBCROPS AND MODEL LAYERING 
• Model captures reservoir complexity 

beneath subcrop as porous zones 
are trapped beneath unconformity 

• Combination of rock type, layering 
and porosity models leads to 
accurate reservoir model 
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PROPERTY MODELING WORKFLOW 

Defi ne lithofacies in 
available wells with 

cores 

Tie lithofacies to log 
properties using 
neural network 

Pred iet lithofacies in 
wells without core 

Full-field model relies on properly QC ' d and tied input and data 
from geology, petrophysics, geophysics 
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• Seismic attributes correlated with property 
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permeability) need to be 
modeled first, then Sw can 
be calculated on a cell-by­
cell basis using capillary 
pressure approach 
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• Highly variable GOR 
• Changing oil-water contacts 

Compartment boundaries evidence 
• Faults with offset 
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• Free Water Level is mapped 
as flat in some 
compartments and sloping in 
others 
) Does not likely reflect actua l 
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approximation of stair­
stepping across micro­
compartments 

• FWL reset across 
compartment boundaries 
reflected in production 
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Use of reservoir model displays, along with seismic- and well log cross sections, 
prove essential for well planning and team communication 
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