Global Distribution of Petroleum Reserves in Deep Reservoirs*

Binfeng Cao¹ and Guoping Bai¹

Search and Discovery Article #30345 (2014)**
Posted July 24, 2014

*Adapted from oral presentation given at 2014 AAPG Annual Convention and Exhibition, Houston, Texas, April 6-9, 2014
**AAPG©2014 Serial rights given by author. For all other rights contact author directly.

¹State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing, China (caobinfeng@126.com)

Abstract

Exploration for deep petroleum accumulations, which refer to those at burial depths of no less than 15,000 ft (about 4,572 m), deserves more specialized attention. Excluding US onshore Lower 48 States, 87 major sedimentary basins are identified to host deep petroleum accumulations throughout the world. North America contains the largest quantities of the discovered deep petroleum with original proved plus probable (2P) reserves of 28,060 MMBOE. The three most prolific basins for deep petroleum are the Gulf of Mexico, Arabian and East Venezuela Basins, and they contain 48.6% of the total deep original 2P petroleum reserves in the world. 63.3% of the total are reservoired in clastic rocks, 35.0% in carbonates and 1.7% in crystalline rocks. In terms of trap type, 95.7% of the total are entrapped in structural and combination traps. Passive margin and foreland basins contain the bulk of the deep original 2P petroleum reserves in the world, with the former accounting for 47.7% of the total and the latter 46.4%. Salt-bearing deep sedimentary basins are significantly more prospective for deep petroleum than basins without salt, which is attributed to the relative cooling effect for the subsalt sediments induced by salt and associated salt structures. The effect is responsible for retardation of source rock maturation in the deep parts of petroliferous basins. The petroliferous basins in the Tethyan realm contain 85.0% of the world total deep original 2P petroleum reserves, which is similar to the distribution of petroleum in shallow-intermediate reservoirs. 92.3% of the total occurs in reservoirs with burial depths of 15,000 ft (about 4,572 m) to 20,000 ft (about 6,096 m).

Stratigraphically, the deep petroleum reserves are largely confined to five reservoir intervals: Neogene (hosting 22.3% of the total), Upper Paleozoic (22.2%), Cretaceous (18.4%), Paleogene (12.8%) and Jurassic (12.8%). The concentration of deep petroleum reserves in the Jurassic-Tertiary reservoir rocks may be a direct result of widespread availability of more effective source rocks in these stratigraphic intervals. There exists an objective similarity in the stratigraphic distribution of generated and trapped original reserves for both deep and shallow-intermediate petroleum. Therefore, we suggest that the deep petroleum exploration should target the play fairways where substantial shallow-intermediate petroleum reserves have already been discovered.

Selected References

Global Distribution of Petroleum Reserves in Deep Reservoirs

Binfeng Cao, Guoping Bai
State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing
Outline

- Introduction
- Geological characteristics of deep petroleum accumulations
- Distribution of deep petroleum
- Comparison between deep and shallow-intermediate petroleum
- Conclusion
Introduction

Deep petroleum is defined as oil and/or gas occurring in reservoirs at burial depths of no less than 15,000 ft (Dyman et al., 2002). Exploration for deep petroleum deserves more specialized attention.

Discovery history of worldwide deep petroleum, excludes onshore Lower 48 States (Unconventional resources are not counted)
General geological characteristics of deep petroleum

- Hydrocarbon types
- Reservoir rock types
- Trap types
General geological characteristics—hydrocarbon types

Deep oil: 42 BBO (making up 1.9% of the world total oil)
Deep gas: 356 TCF (3.6%)
Deep condensate: 10 BBC (2.1%)
Total: 111670 MMBOE
General geological characteristics—reservoir rock types

Clastic rocks, carbonate, igneous and metamorphic rocks
Clastic reservoirs exhibit the highest porosities

All prolific reservoirs deeper than 24,000 ft are sandstone, and have the porosities of 18%-30%
General geological characteristics—trap types

Structural: 73.8% of the total
Combination: 21.9%
Stratigraphic traps: 4.4%

It is truly unadvisable that stratigraphic traps should be ignored and even avoided in deep petroleum exploration.
Distributions of deep petroleum

Excluding onshore Lower 48 States, we have identified 87 major basins containing discovered deep petroleum of 349 sedimentary basins in the entire world, amounting to 1595 fields or pools.

The distributions of deep oil, gas and condensate by:
1) Geographic region
2) Basin type
3) Burial depth
4) Stratigraphic interval
Distributions by geographic regions

Distribution map of deep basins and deep petroleum accumulations

Gulf of Mexico
East Venezuela
Arabian
Tarim
Distributions by geographic regions

North America contains the largest quantities, followed by Middle East and then Central and South America. North America is the most prolific for deep oil reserves. Middle East has the largest share of deep gas and condensate reserves.

<table>
<thead>
<tr>
<th>Region</th>
<th>Original 2P Oil Reserve (MMBO)</th>
<th>Original 2P Gas Reserve (BCF)</th>
<th>Original 2P Condensate Reserve (MMBC)</th>
<th>MMBOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Former Soviet Union</td>
<td>2,880</td>
<td>47,727</td>
<td>1,134</td>
<td>11,968</td>
</tr>
<tr>
<td>Europe</td>
<td>548</td>
<td>20,210</td>
<td>1,022</td>
<td>4,939</td>
</tr>
<tr>
<td>Asia Pacific</td>
<td>5,696</td>
<td>69,294</td>
<td>620</td>
<td>17,866</td>
</tr>
<tr>
<td>North America</td>
<td>20,225</td>
<td>37,415</td>
<td>1,600</td>
<td>28,060</td>
</tr>
<tr>
<td>Central and South America</td>
<td>7,555</td>
<td>77,282</td>
<td>1,830</td>
<td>22,265</td>
</tr>
<tr>
<td>Africa</td>
<td>207</td>
<td>7,469</td>
<td>51</td>
<td>1,503</td>
</tr>
<tr>
<td>Middle East</td>
<td>5,071</td>
<td>96,701</td>
<td>3,881</td>
<td>25,069</td>
</tr>
<tr>
<td>World</td>
<td>42,183</td>
<td>356,098</td>
<td>10,137</td>
<td>111,670</td>
</tr>
</tbody>
</table>
Distributions by basin types

Passive margin and foreland basins contain the bulk of the world total

The basin classification is from Ingersoll and Busby (1995)
92.3% of the world total occur in the burial depth interval of 15,000 ft to 20,000 ft
The more prolific intervals are Neogene, Upper Paleozoic, Cretaceous, Paleogene and Jurassic, containing 88.4% of the world total. Older reservoirs are still highlighted as significant targets for gas.
Salt deposits

33 of the 87 deep sedimentary basins are salt basins

These 33 salt basins contain 65.8% of the world total deep petroleum, emphatically, with deep oil reserves accounting for 75.9% of the world total deep oil
Roles of stratigraphic age

The concentration in the Jurassic-Tertiary reservoir rocks may be a direct result of widespread availability of more effective source rocks. The older source intervals generally contributed smaller than younger ones.

Generated versus trapped deep petroleum reserves in stratigraphic column

(A) Deep petroleum
(B) Shallow-intermediate petroleum
(modified from Klemme & Ulmishek (1991))
Comparison between deep and shallow-intermediate petroleum

There exists an objective similarity in the stratigraphic distribution of generated and trapped original reserves for both deep and shallow-intermediate petroleum.

The areas where substantial shallow-intermediate petroleum reserves have already been discovered tend to have greater exploration potentials for deep petroleum.
Conclusion 1

North America contains the largest quantities of the discovered deep petroleum. The four most prolific basins for deep petroleum are the Gulf of Mexico, Arabian, East Venezuela and Tarim Basins.

63.3% of the total are reservoired in clastic rocks, 35.0% in carbonates. 95.7% of the total are entrapped in structural and combination traps.

Passive margin and foreland basins contain the bulk of the deep petroleum reserves in the world.
Conclusion 2

Stratigraphically, the deep petroleum reserves are largely confined to five reservoir intervals: Neogene (hosting 22.3% of the total), Upper Paleozoic (22.2%), Cretaceous (18.4%), Paleogene (12.8%) and Jurassic (12.8%).

Salt-bearing deep sedimentary basins are significantly more prospective for deep petroleum than basins without salt.

We suggest that the deep petroleum exploration should target the play fairways where substantial shallow-intermediate petroleum reserves have already been discovered, particularly those fairways with significant development of salts.