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Abstract

Down-slope processes have long been considered the primary control on deep-sea sedimentation. More recently the contribution of slope-
parallel processes in deep-sea sedimentation have been highlighted. Slope-parallel processes, such as bathymetric contour parallel currents
driven by thermohaline forcings, are capable of reworking and depositing significant volumes of oceanic sediment in mud-dominated
accumulations known as contourite drifts. Forcings controlling deposition vary in intensity and focus through time with a record of these
dynamics being recorded in the morphologic character of the drifts.

The J-Anomaly and Newfoundland Ridges, offshore eastern Canada, intersect the Deep Western Boundary Current (a slope-parallel current),
providing the necessary conditions for significant and long-lived deposition of contourite drifts. A grid of 56 2-D seismic-

reflection profiles combined with nine drill sites from IODP Expedition 342 facilitates the ability to link seismic-scale stratal geometries to a
robust chronology and information about sediment character. This integrated dataset affords the ability to map the volumetric sediment
distribution of these drifts and hence the dynamics of the Deep Western Boundary Current through time, providing insight towards the
dynamics involved in slope-parallel depositional systems. Seismic stratigraphic mapping indicates distinct changes in contourite morphologies
and depocenters, which are interpreted to reflect changes in current energy and path through time. Seismic facies characteristic of contourite
drifts vary from low amplitude transparent reflectors to moderate amplitude concordant wavy reflectors, and are interpreted to reflect changes
in current energy. Generating isochron maps identifies lateral shifts in depocenters, with unit thickness on the hundred to thousand of meter
scale, which are interpreted to reflect changes in bottom current focus and path. Linking sediment cores to seismic stratigraphic interpretations
also enables calculation of volumetric sediment accumulation rates, which more accurately describe contourite depositional history than do
linear rates obtained from core alone. Increased understanding of the dynamics involved in mud-dominated depositional systems influenced by
the activity of bathymetric contour parallel currents will prove beneficial when developing more accurate depositional models for
unconventional hydrocarbon plays.
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The global climate system and oceanic circulation
are intimately connected
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" http://worldoceanreview.com/

Thermohaline Circulation: the portion of global oceanic circulation driven by
density gradients caused by fluctuations in ocean water
temperature and salinity

Bottom Current: deep-water semi-permanent current formed by thermohaline or
major wind driven circulation (Deep Western Boundary Current)
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Sedimentary drifts deposited by
oceanic currents display
morphology and character
related to their evolution

Contourite drift: slope parallel sedimentary body
deposited by or significantly affected under the influence
of bottom currents.

Identification Criteria:

1. Mounded morphology
Up-slope migration
Basal unconformity
Seismic facies (ex. transparent)
Slope parallel/ down current
elongation
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Contourite drifts play a significant role in deep-sea
sedimentation and the shaping of continental margins
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Conditions over the Southeast Newfoundland and J-Anomaly
Rldge are |deal for Iong -lived deposition of contourite drifts
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Seismic stratigraphic mapping
Identifies distinct changes in
contourite drift morphology
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Seismic stratigraphic

Post-Drift Phase

identifies distinct chamges m
contourite drift morphology
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eismic reflection profile L05
displays representative seismic
character of the JAR
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5.0

54 _F

58] %

6.2 _

6.6 _

Seismic reflection profile L05
displays representative seismic
character of the JAR
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Seismic reflection profile L05
displays representative seismic
character of the JAR
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Depth (TWT)

Seismic reflection profile LO37
displays representative seismic
character of the SENR

32 40
Distance (km)

geosCl

ences

T VIRGINIA TECH



Seismic reflection profile L0O37
displays representative seismic
character of the SENR
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Depth (TWT)

Seismic reflection profile L0O37
displays representative seismic
character of the SENR

Mounded Morphology
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Seismic reflection profile L020

displays representative seismic

character In close proximity to
the SENR seamounts
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Seismic reflection profile L020

displays representative seismic

character In close proximity to
the SENR seamounts
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Seismic reflection profile L020
displays representative seismic
character In close proximity to

the SENR seamounts
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Isochron mapping provides a
more complete understanding
of contourite drift evolution
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Seismic Stratigraphic Unit 3
50.31-30.22 Ma
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Active-Drift Phase
sedimentation

Points of maximum accumulations
are located in the southern half of
the study area

Sedimentary thickness reaches a
thickness up to 1100 ms (TWT)
(~850 m)

Display mounded, elongate, slope
parallel morphology

Deposition focuses into a well
defined belt from Seismic
Stratigraphic Unit 3 to Seismic
Stratigraphic Unit 4
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Volumetric and mass accumulation rates respond to the
dynamic evolution of bottom-current controlled systems
Mass Accumulation Rate
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How do our seismic stratigraphic interpretations
correlate to Cenozoic climatic and tectonic events?
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What drives the dynamics of contourite systems?

_—

Bathymetry of depositional site
» What role do volcanic and sedimentary bathymetric features play?

Global temperature — This study

Tectonic forcings

Sea level fluctuations
« How do these systems respond to eustatic fluctuations?

Supply of sediment
» How do changes in the quantity, composition, and availability of sediment influence the
formation of contourite drifts?

Ocean chemistry
 |s the Carbonate Compensation Depth (CCD) affected by thermohaline
forcings?

Interaction between currents
» How do these systems responded when oceanic currents interact?
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Takeaways

1. Sedimentary systems deposited under the influence of oceanic currents are
complex. Contourite drifts are not simple mounds of sediment.

1. The ability for thermohaline circulation to rework and deposit deep-sea sediment is
not restricted to contourite drift systems. Oceanic currents have the potential to
interact with all marine sediment.

1. Forcings that interact with marine sediment evolve through geologic time, with an
archive of this evolution being recorded in the sediments of contourite drifts.
Deciphering the history of contourite drift systems leads to an increased
understanding of continental margin dynamics.
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