Mineralogy and Petrology Controls on Hydrocarbon Saturation in the Three Forks Reservoir, North Dakota*

David Petty¹

Search and Discovery Article #10623 (2014)**
Posted August 11, 2014

*Adapted from oral presentation given at 2014 AAPG Annual Convention and Exhibition, Houston, Texas, April 6-9, 2014
**AAPG©2014 Serial rights given by author. For all other rights contact author directly.

¹Hess Corporation, Houston, Texas, USA (dpetty@hess.com)

Abstract

The Three Forks reservoir forms the lower part of the “Bakken pool” in the North Dakota portion of the Williston basin. Oil production occurs from sandy to silty dolomitic lithologies in the upper portion of the Three Forks Formation. In most oil-productive areas of western North Dakota, three reservoir rock types can be defined in the upper Three Forks based on mineralogy, capillary pressure characteristics and water saturation distributions. The best Three Forks hydrocarbon saturations occur in brown to tan, sandy to silty dolostone. Within the productive oil column, this end-member lithology typically has 2-7% porosity (4.3% average) and 5-25% water saturation. The average mineral content is 63% dolomite, 31% quartz-feldspar and 3% illite (values less than 1% not listed). A second end-member rock type is green, silty, dolomitic mudstone that typically has 5-11% porosity (8.9% average) and 40-90% water saturation. The average mineral content is 35% dolomite, 31% quartz-feldspar, 30% clay minerals (23% illite, 4% chlorite, 3% illite-smectite), and 2% pyrite-marcasite. The third rock type consists of mixed brown and green, sandy to silty dolostone, with intermediate reservoir rock properties. It includes laminated and brecciated lithologies.

Due to small pore-throat sizes, oil column heights greater than 3,000 feet would have been needed to achieve observed hydrocarbon saturations in a water-wet system. Under these conditions, the oil column is too thin to be explained by simple buoyancy-driven oil emplacement. Based on an analogy with very low permeability, continuous gas reservoirs, it is inferred that either: 1) hydrocarbon emplacement occurred at a shallower depth where permeability was higher, or 2) overpressure
(current or ancient) that developed during maturation of overlying Bakken shales was required to emplace oil in rocks with existing very low permeability.

References Cited

Mineralogy and Petrology Controls on Hydrocarbon Saturation in the Three Forks Reservoir, North Dakota

David M. Petty
April 9, 2014
Objectives

- Define reservoir rock types in the upper portion of the Three Forks Formation in the North Dakota portion of the Williston basin
- Discuss significance of saturation distributions for upper Three Forks rock types
Stratigraphic Column

<table>
<thead>
<tr>
<th>DEVONIAN</th>
<th>MISS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Famennian</td>
<td>Tournaisian</td>
</tr>
</tbody>
</table>

- **Three Forks**
 - 1st Bench
 - 2nd Bench
 - 3rd Bench
 - 4th Bench

- **Sanish**
- **Upper Bakken Shale**
- **Middle Bakken**
- **Lower Bakken Shale**
- **Pronghorn**
- **Basal Bakken**
- **Upper Bakken 2nd-Order TST (Petty, 2006)**
- **Lodgepole**
- **Upper Three Forks**

Acadian Discontinuity
1st or 2nd-Order Subaerial Unconformity

"Upper Three Forks"
This Study = “1st Bench”

- = Three Forks-Sanish Reservoir
Upper Three Forks Data

- Map shows contours for % water cut from the Three Forks-Sanish reservoir;
- Map broadly defines production quality with best production in low water-cut areas
- From 1320 horizontal wells with stabilized water cuts

Data For Rock Type Study

★ = Cores with XRD data for upper Three Forks.
★ = Cores examined; no XRD
Type Log Location

Type Log: Hess Corporation EN Person Observation Well #11-22, 156-94-11; Mountrail County
- Located in area with about 45% stabilized water cut
- 30-day IP = 665 BOPD in offset well (EN Hein H4)
EN Person Obs. Well # 11-22: Log and Sw Data

Bakken/Sanish

1st Bench

2nd Bench

3rd Bench

4th Bench

Three Forks Formation

Birdbear

Fluorescence

Widespread Strong Blue to White Fluorescence

Spotty White to Gold Fluorescence or No Fluorescence

Little Fluorescence; All Gold

Interpretation

Mostly Oil Productive

Mostly Water Productive

All Water-Productive

Orange = Core Sw
Solid Blue = Log Sw

Water Saturation

Depth in Feet

0 50 100
Reservoir Rock Types: Three Forks 1st Bench

- Many sedimentological microfacies occur in the upper Three Forks.
- Using the regional core data set, 3 main rock types can be defined based on mineralogy, capillary pressure characteristics and water saturation distributions:
 - 2 rock types are end-member lithologies
 - Brown to tan, silty to sandy dolostone
 - Green silty mudstone
 - For this study, data is confined to pure, end-member samples
 - 1 rock type consists of mixtures of brown dolostone and green mudstone
3 Reservoir Rock Types: Three Forks 1st Bench; EN Person

1) Brown to Tan, Silty to Sandy Dolostone End-Member
 - Ø = 5.4% Sw = 10%

2) Green Silty Mudstone End-Member (marker-beds)
 - Ø = 8.3% Sw = 72%

3) Mixed Green and Brown: Laminated
 - Ø = 7.9% Sw = 36%

3) Mixed Green and Brown: Breccia
 - Ø = 6.1% Sw = 46%
Brown Dolostone with Uniform White Fluorescence ("Blue" or "Bluish-White" Fluorescence described by some researchers)

10189.45’: Dean-Stark Analysis
\[\phi = 5.0\% \text{ with confining stress} \]
Core Water Saturation = 17%
Log Water Saturation = 15%
Brown Silty Dolostone End Member: Composition

Average composition for All Brown Silty Dolostone End-Member Samples:
- 63% dolomite
- 30% quartz-feldspar
- 3% illite

Amounts <1% not shown

Average from core plugs:
- 4.3% porosity*
- 15% water saturation*

*For samples above oil-water transition zone
SEM View: Brown Silty-Sandy Dolostone

Hovden 15-1H (145-97-14)
11,256.40’
Ø = 4.9%,
Green Silty Mudstone End Member: Composition

Average Composition for Green Silty Mudstone:
- 36% dolomite
- 30% quartz-feldspar
- 30% clay minerals
 - 22% illite
 - 5% chlorite
 - 3% illite-smectite
 - 2% pyrite-marcasite

Amounts <1% not shown

Average from core plugs:
- 8.9% porosity
- 69% water saturation*

*For samples within “oil column”
SEM View: Green Silty Mudstone

EN Person Obs. #11-22 (156-94-11)
10,213.5”
Ø = 4.9%,

Dolomite
Illite
Kspar
Dolomite
Dolomite
Illite
Illite
Illite
50 µm

Weatherford - HH-51282 - 10213.50 ft.
EN Person 11-22; Three Forks Hg-Inf. Cap. Pressure

- Brown sandy-silty dolostone;
 Averages:
 $\phi = 4.4\%$,
 $K_a = 0.0035$ md*
 $S_w = 18\%**$

- Mixed brown & green lithologies;
 Averages:
 $\phi = 7.0\%$,
 $K_a = 0.0010$ md*
 $S_w = 43\%**$

- Green mudstone;
 Averages:
 $\phi = 7.0\%$,
 $K_a = 0.0003$ md*
 $S_w = 73\%**$

*Calculated from Hg-injection
**For samples within oil column
This laminated sample illustrates one method for logging rock types in the upper Three Forks.

60% Sandy Brown Dolostone with White Fluorescence
40% Green Mudstone with Gold Fluorescence

End-member rock types are plotted relative to core gamma-ray log for 1st Bench in next slide.
Logging End-Member Rock Types in the Three Forks

EN Person Obs. #11-22

First Bench

“Basal Clean”

Core GR

Core

Depth

10180

10190

10200

10210

(Feet)

% Green Mudstone

0

100

% Brown Dolostone

Brown Dolostone

Green Mudstone
EN Person 11-22; Capillary Pressure for Brown Dolostone

- Sw values for brown dolostone
- Sw Range = 10-25%
- Average H = 3,540’ above FWL
- Applies to initial water-wet conditions that would have controlled oil entry into reservoir
- Current wettability may be different

Oil-Water System
Contact Angle = 30°
Cross Section A-A’ Location: 1st Bench

Location
Cross Section A-A’
Next 2 Slides:
Relative to Three Forks water cut contours
Regional Structure and Saturation for 1st Bench

- Current Bakken Overpressure
- Thermally Mature Bakken
- Three Forks Oil Production

Beaver Lodge Field
EN Person 11-22
1st Bench
Base
Core
Sw < 25%

Top Three Forks
1st Bench
162-86-16
-4000
-5000
-6000
-7000
20 Feet
20 Miles

From Regional Maps
The “Basal Clean” unit of the Three Forks is the horizontal target in most productive areas. This unit is laterally continuous and transitions from oil-bearing downdip to water-bearing updip.
Discussion

• There is no evidence for a lateral barrier within the upper Three Forks on the eastern and southern edge of the Three Forks accumulation, as illustrated by Cross Section A-A’. In these areas, the brown dolostone acts as a reservoir in basinal areas and a baffle or capillary barrier in flank areas.

• Water saturations that require a 3,540’ oil column cannot be explained by simple buoyancy-driven emplacement in a water-wet system.

• Research on tight gas accumulations suggests that overpressure due to hydrocarbon maturation is a mechanism to saturate very low permeability rock under water-wet conditions (e.g., Fall et al., 2012). Most oil-bearing reservoirs are believed to be water-wet initially, (Anderson, 1986).
Conclusions

Three Forks Hg-Inj. Capillary Pressure

• Capillarity characteristics control saturation distributions within the reservoir
• Low water saturations are generally confined to the brown dolostone because this rock type has the largest pore throats and best permeabilities
Conclusions

- Capillarity characteristics also control oil entry into the reservoir.
- Overpressure (current or ancient) is the most likely cause for low water saturations in the very low-permeability rocks typical for the upper Three Forks reservoir.
Conclusions

- Capillarity characteristics also control oil migration out of the reservoir.
- High entry pressures in the brown dolostone act as a baffle to oil migration in normal-pressure areas.
Conclusions

- On a regional scale, hydrocarbon migration was primarily vertical; oil was forced downward under pressure from overlying Bakken shales and there was limited oil migration outside of overpressure areas or areas with regional fracture conduits.

Well on edge of thermal maturity
References

End